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Prospect theory and other descriptive theories of choice under risk include non-linear 

probability weighting as a fundamental component. But why do these concrete information 

processing mistakes exist? Should we try to educate people to avoid the error of 

overestimating tiny probability and underestimating large ones? In this article, we contend 

that probability weighting can be viewed as compensating for biases that may already exist 

when evaluating payoffs. The reverse of S-shaped payoff valuation is known as inverse S-

shaped probability weighting. So, probability distortions might have persisted as the second-

best answer to a fitness maximisation problem, and it might be harmful to rectify them while 

maintaining the same value function 

 
 

 

 
1. Introduction 

 
Prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) is one of the most successful descriptive theories 

for choice under risk. It rests on two main building blocks for the evaluation of lotteries: an adaptive value function, which 

captures both loss aversion and different risk attitudes across the domains of gains and losses, and a probability 

weighting function, which captures systematic distortions in the way probabilities are perceived. Of these ingredients, the 

probability distortions are particularly remarkable, as they reflect objective errors in information processing: overweighting 

of small and underweighting of large probabilities, relative to their true magnitudes. The existence of such objective errors 

gives rise to puzzling questions. For instance, should we help individuals make better decisions by trying to correct their 

mistakes? Some scholars have argued that this is indeed the case.1 Also, why do these errors exist in the first place? 

Evolutionary arguments typically predict that individuals who make systematic mistakes do not survive because they are 

replaced by more rational types.2 

In this paper we propose a novel perspective on probability weighting, which sheds light on both its evolutionary origins 

and its consequences for paternalism. We argue that the particular form of probability misperception in prospect theory 

can be seen as an optimal compensation for similar biases introduced by the value function. Probability weighting may thus 

have survived as a second-best optimal solution to a fitness maximization problem, and it might be misleading to think of 

it as an error that needs correction. Our basic model and results are presented in Section 2, where we consider the case of 

simple prospects with one possible payoff gain and one possible payoff loss. Nature offers such prospects randomly to an 

agent, who decides whether to accept or reject. The agent evaluates the payoffs by an S-shaped value function, as postulated in 

prospect theory. We investigate the agent’s choices for different probability weighting schemes, and in particular we look for 

the shape of probability perception that yields choices with maximal expected payoffs. For the case without loss aversion, 

we first show that any solution to the problem indeed involves overweighting of small and underweighting of large 

probabilities. Intuitively, prospects with an expected payoff close to zero are especially prone to decision mistakes, and small 

probabilities go along with large absolute payoffs in such prospects. Large absolute payoffs are, in turn, relatively undervalued by 

an S-shaped value function. To compensate, it becomes optimal to overweigh small and underweigh large probabilities. 

Non-linear probability weighting here emerges as a second-best distortion in response to the value function that constitutes 

a distortionary constraint (Lipsey and Lancaster, 1956). The resulting behavior is still different from expected payoff 

maximization in most cases, because the first-best cannot be achieved generically. 
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We continue to show that the optimal perception can be implemented by weighting functions that have been used in 

both empirical and theoretical work on prospect theory (Gonzalez and Wu, 1999). In some cases, the optimal weighting is 

reflective and symmetric (Prelec, 1998). We also illustrate that loss aversion, the systematically different treatment of gains 

and losses, implies that gain and loss probabilities should be perceived differently, predicting violations of reflectivity in the 

direction of an optimism bias (Sharot et al., 2007). Section 3 of the paper contains affirming numerical results for more 

complex prospects. 

Our results reveal an interesting internal structure of prospect theory by describing value and weighting function as 

two complementary elements that interact in an optimized way. This has implications for the interpretation of probability 

distortions, because now they serve a useful purpose rather than being a mistake. Related arguments about the expedience 

of biases have been made in the literature. Kahneman and Lovallo (1993) have first pointed out that exaggerated aversion 

to risk and exaggerated optimism might partially compensate for one another.3 Besharov (2004) illustrates how attempts to 

correct interacting biases can backfire, focussing on overconfidence in conjunction with hyperbolic discounting and regret. 

Steiner and Stewart (2016) derive distorted probability perception as an optimal correction for a winner’s curse problem 

induced by noisy information processing. They also predict the prospect theory shape of probability weighting, and they 

discuss the opportunities and limits that this creates for “debiasing” agents.4 

While evolutionary models quite often predict the emergence of fully rational agents, several contributions have modelled 

the effect of cognitive or perceptive constraints on the outcome of a biological selection process.5 Related to prospect theory, 

some papers (e.g. Friedman, 1989; Robson, 2001; Rayo and Becker, 2007; Netzer, 2009) have concluded that adaptive and 

 
2 Robson and Samuelson (2010) survey a large literature on the evolution of preferences and behavior. More specifically, Robson (1996) has shown 

that evolution will select expected fitness maximizing agents whenever risk is idiosyncratic. Expected fitness maximization is not evolutionarily optimal 

for correlated risks (see also Cooper and Kaplan, 1982; Bergstrom, 1997; Curry, 2001; Robson and Samuelson, 2009), but correlation does not provide a 

rationale for the above described errors in probability perception. 
3 Several other papers have provided purpose-oriented explanations for optimism or overconfidence. In Bernardo and Welch (2001), overconfidence helps 

to solve problems of herding. In Carrillo and Mariotti (2000), Bénabou and Tirole (2002) and Brocas and Carrillo (2004), individuals may choose to adhere 

to delusions because they serve as commitment devices in the presence of time-inconsistency problems. Compte and Postlewaite (2004) model a situation 

where some overconfidence is optimal because it increases actual success probabilities. In Johnson and Fowler ( 2011), overconfidence arises in a hawk-dove 

type of interaction, based on the assumption that players behave aggressively whenever they believe to be more able than their opponent. 
4 In Friedman and Massaro (1998), agents cannot perceive or process a true objective probability p ∈ [0, 1] but instead have to work with pˆ ∈ [0, 1] 

which corresponds to the true probability p plus a noise term e. The signalling process is such that if |p + e| > 1 then a new signal is drawn, and thus the 

expected value of the true probability E(p|pˆ ) is closer to 0.5 than the signal pˆ . Weighting probabilities is thus rational once the signal generating process 
is taken into account. In a similar spirit, Enke and Graeber (2021) argue that updating beliefs about a probability from a uniform prior leads to estimates 

closer to 0.5 than the signal, and the extent of this effect depends on the level of uncertainty in beliefs. They provide experimental evidence in line with 

their predictions. Rieger (2014) suggests another reason for probability weighting that is different from ours. If observable by the opponent, the bias of 

underweighting large probabilities can have a strategic advantage in certain games such as war of attrition and a class of games he calls social control 

games. In such games it can favorably influence the mixed equilibrium and thus be evolutionary semi-stable. Heifetz et al. (2007) study the evolution of 

general perception biases that change the equilibrium structure in strategic settings. See Acemoglu and Yildiz (2001) for an evolutionary model of strategic 

interactions in which different behavioral anomalies emerge that perfectly compensate for one another. 
5 These include Samuelson (2004) and Noeldeke and Samuelson (2005), where agents cannot correctly process information about their environment, 

specifically about current earnings opportunities. Concern for relative consumption then becomes evolution’s constrained optimal way of utilizing the  

information inherent in others’ consumption levels. Samuelson and Swinkels (2006) argue that choice-set dependency might be an analogous way of 

correcting for an agent’s lack of understanding of her choices’ fitness implications under different conditions. Baliga and Ely (2011), although not explicitly 

within an evolutionary framework, start from the assumption of imperfect memory: after having made an investment, an agent forgets about the details of 

the project. The initial investment now still contains information, and relying on this information for future decisions on the project can be optimal rather 

than a “sunk cost fallacy”. 
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possibly S-shaped value functions can be superior in the presence of such constraints. In these models, steepness of the 

function that evaluates fitness payoffs can be helpful in preventing decision mistakes, because it enables distinguishing 

alternatives even if they are very similar to each other. A relatively large slope should thus be allocated to regions where 

correct decisions matter most, which can explain adaptation to a reference point and the S-shape.6 In this paper, we treat 

the value function as a primitive and do not derive it from more basic principles. This can be thought of as a methodological 

shortcut that allows us to illustrate the interplay between payoff valuation and probability weighting without having to 

model a joint evolutionary process under constraints.7 

Some papers have explicitly investigated the interplay between different anomalies from an evolutionary perspective. 

With imperfect information constraints, Suzuki (2012) derives the joint evolutionary optimality of present bias, false beliefs 

and a concern to avoid cognitive dissonance, while Yao and Li (2013) show that optimism and loss aversion may coevolve 

because they jointly improve financial success, similar to one of our findings. Waldman (1994) was the first to apply the 

second-best concept in an evolutionary context. In his model a second-best population, consisting of agents who exhibit 

behavioral biases that are mutually (but not necessarily globally) optimal, cannot be invaded by a first-best mutant, because 

its optimal characteristics are diluted in the process of sexual recombination.8 Ely (2011) demonstrates that an evolutionary 

process can accumulate second-best “kludges” instead of ever converging to a first-best solution. He considers a complex 

species that remains stuck in a second-best forever because small local improvements, which take all other behavioral 

parameters as given, are substantially more likely to occur than a complete redesign. These general insights on the evolution 

of boundedly optimal behavior also justify our idea of optimizing the probability perception with a value function already in 

place (or the other way round), rather than solving a joint optimization problem. Even though it would be better to remove 

both distortions simultaneously, path-dependence of the evolutionary process can make such a solution very unlikely or 

infeasible.9 

2. Probability weighting for simple prospects 

 
 Basic model 

We start by considering a model of simple prospects. Such prospects consist of one possible payoff gain of size x > 0 

which occurs with probability 0 < p < 1, and one possible payoff loss of size y > 0 which occurs with probability 1 − p. It 
is convenient to define prospects in terms of relative rather than absolute probabilities. Hence a simple prospect is a tuple 

(q, x, y) from the set P = R3 , where q = p/(1 − p) is the relative probability of a gain. The function F : P → R, defined 
by 

F (q, x, y) =

 
 q 

 

x −

 
  1 

  

y, (1) 
 

assigns to each prospect (q, x, y) its expectation, where we used the identity p = q/(1 + q). We will refer to F as the fitness 

function and treat it as the criterion for optimal decisions. With our evolutionary interpretation in mind, we think of gains 

and losses as being measured in terms of biological fitness relative to a decision-maker’s current fitness level c ∈ R (such as 

the current number of expected offspring). The results by e.g. Robson (1996) then justify the use of (1) as the criterion for 

evolutionary success. In the simplest possible choice situation where the decision-maker is faced with a prospect and has 

to decide whether to accept it or stay at the current level of fitness with certainty, prospect (q, x, y) should be accepted if 

and only if F (q, x, y) ≥ 0, or equivalently q ≥ y/x, so that it (weakly) increases expected fitness above the current level. Let 

P+ = {(q, x, y) ∈ P|q ≥ y/x} be the optimal acceptance set. 

We now assume that the decision-maker uses an S-shaped value function V : R → R to evaluate gains and losses 

relative to c. It satisfies V (c) = 0 and is depicted in Fig. 1. We decompose V into two functions, one used to evaluate gains 

(v G ) and one to evaluate losses (v L ). Specifically, we define v G : R+ → R+ by v G (x) = V (c + x) for all gains x > 0, and 

v L : R+ → R+ by v L ( y) = −V (c − y) for all losses y > 0. We assume that both v G and v L are continuously differentiable, 
strictly increasing, strictly concave, and unbounded. 

 
6 For related arguments in different modelling frameworks and for critical discussions see Robson and Samuelson ( 2011), Kornienko (2011), Wolpert and 

Leslie (2012) and Woodford (2012b,a). See Hamo and Heifetz (2002) for a model in which S-shaped utility evolves in a framework with aggregate risk, and 

McDermott et al. (2008) for a model where S-shaped utility is optimal if reproductive success is determined by a single fitness threshold. 
7 In more recent work, Netzer et al. (2021) show that S-shaped coding of rewards and oversampling of small probability events can be jointly optimal 

under constraints. Whether or not this optimal perception strategy generates behavior in line with prospect theory depends on the a gent’s degree of 

understanding of the risk. 
8 As an application, Waldman (1994) discusses the co-evolution of disutility of effort and overconfidence. See Dobbs and Molho (1999) for a generalized 

version of the model, with an application to effort disutility and risk aversion, among others. Similar ideas are studied in Zhang (2013), who focusses on 

risk-aversion and overconfidence, and Frenkel et al. (2018), who examine the endowment effect and the winner’s curse. 
9 For instance, we can imagine a payoff valuation function being deeply ingrained in our brains, something that may have evolved in our distant evolu- 

tionary past, shaped by evolutionary forces to deal with mostly simple and possibly deterministic choices that our brain was capable of analyzing at that 

time. Dealing with uncertainty in the form of explicit probabilities requires substantially more sophisticated cognitive capabilities, and the development of 

the corresponding cognitive processes might have taken place when the value function was already given. 
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Fig. 1. The value function. 

 
Concerning the perception of probabilities, let η : R+ → R+ be a measurable weighting function that yields a perceived 

relative probability η(q) for any true relative probability q. Hence the actual gain probability p is perceived as η(q)/(1 +η(q)) 

and the loss probability 1 − p is perceived as 1/(1 + η(q)) by the decision-maker. With these concepts at hand, the subjective 
utility score assigned to a prospect is 

U (q, x, y) =

 
 η(q) 

  

v (x) −

 
   1 

  

v ( y). (2) 
η 

1 + η(q) 
G 

1 + η(q) 
L

 

The decision-maker accepts prospect (q, x, y) if and only if Uη(q, x, y) ≥ 0. This can be reformulated to η(q) ≥ v L ( y)/v G (x), 

which is directly comparable to the criterion for optimal choice q ≥ y/x. We will be interested in the weighting function η 
that maximizes expected fitness, given the fixed value function. Since the value function distorts one side of the optimality 

condition, it becomes apparent that the other side should be distorted as well. Let P+ = {(q, x, y) ∈ P|η(q) ≥ v L ( y)/v G (x)} 
be the actual acceptance set. 

We assume that nature randomly draws and offers to the decision-maker one prospect at a time, according to a proba- 

bility distribution that can be described by a strictly positive density h on P (for which the maximal expected fitness F¯ , 

defined below, is finite). We are now interested in the solution to the following program, which we will also refer to as the 

fitness maximization problem: 
 

max 
η 

F (q, x, y)h(q, x, y)d(q, x, y). (3) 

+ 
η 

Problem (3) can be thought of as the reduced form of a frequency-independent dynamic selection process (see 

e.g. Maynard Smith, 1978; Parker and Maynard Smith, 1990). Now suppose that (3) achieves the maximum of F¯ = 

P+ F (q, x, y)h(q, x, y)d(q, x, y), i.e., there exists a weighting function η for which the actual and the optimal acceptance 

sets P+ and P+ coincide up to measure zero. Then behavior under η is almost surely identical to expected payoff max- 
imization, so that η perfectly compensates for the value function. We will say that the first-best is achievable in this case. 

Otherwise, if the value of (3) is strictly smaller than F¯ , the solution is truly second-best, with observed behavior that 

deviates systematically from unconstrained expected payoff maximization. 
 

 Optimal weighting without loss aversion 

 
We first consider the case without loss aversion, which means that there is an S-shape but no systematic distortion in 

the perception of gains versus losses. Formally, the value function is symmetric and given by v G = v L =: v. The following 
proposition then states the important property that the relative probability of the gain is optimally overvalued if the gain is 

less likely than the loss, and undervalued otherwise. 

∫ 

P 
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Proposition 1. Suppose there is no loss aversion. Then, any solution η∗ to (3) satisfies 

η∗(q)  q ⇔ q  1, for almost all q ∈ R+. (4) 

To grasp an intuition for the result, assume that nature offers a prospect (q, x, y) where q = y/x, so that the prospect’s 
expected payoff is exactly zero. If q < 1, then a decision-maker who perceives probabilities correctly would reject this 
prospect. The reason is that any such prospect must satisfy x > y, i.e., its gain must be larger than its loss, such that the 

S-shape of the value function (concavity of v) implies v( y)/v(x) > y/x, resulting in rejection due to an overvaluation of the 

loss relative to the gain. Monotonicity of v implies that all negative fitness prospects with q < 1 are then also rejected, but 

the same still holds for some positive fitness prospects, by continuity of v. Hence when there is no probability weighting, 

prospects with q < 1 are subject to only one of the two possible types of mistakes: rejection of prospects which should be 

accepted. The analogous argument applies to prospects with q > 1, where correct probability perception implies that only 

the mistake of accepting a prospect that should be rejected can occur. To counteract these mistakes, it becomes optimal to 

overvalue small and undervalue large relative probabilities. Note that this intuition does not depend on the specific density 

h. The exact shape of the solution η∗ will generally depend on h, but the direction of probability weighting given in (4) 
does not. 

 
 Optimal weighting with loss aversion 

 
Next, we explore some implications of loss aversion for the optimal perception of probabilities. Loss aversion means that 

the decision-maker takes a loss of given size more seriously than a gain of the same size, so that the value function satisfies 

v G (z) < v L (z) for all z ∈ R+. We work with a slightly stronger condition, which requires that there exists δ > 1 such that 
v L ( y)/v G (x) > y/x whenever y/x ≤ δ. Hence the overvaluation of the loss relative to the gain must extend to some non- 

vanishing range where the loss is strictly larger than the gain. A simple and prominent special case is given by v G (x) = v(x) 

and v L ( y) = γ v( y), for some common function v and a loss aversion parameter γ > 1, but there are also examples with 
non-multiplicative loss aversion (see the Appendix for details). 

 

Proposition 2. Suppose there is loss aversion. Then, there exists q¯ > 1 such that any solution η∗ to (3) satisfies 

η∗(q)> q, for almost all q ≤ q¯. (5) 

The result shows that loss aversion expands the range of overweighting, because correct probability perception would 

now lead to rejection of zero fitness prospects even when the gain is somewhat more likely (and thus smaller) than the 

loss. In particular, a gain should be perceived as more likely than the loss even when they are in fact equally probable 

(η∗(1) > 1). Intuitively, if there is an asymmetry in the evaluation of gains and losses, the second-best principle calls for a 
systematically different treatment of gain and loss probabilities. We will discuss this in greater detail in Section 2.5. 

 
 First-best solutions 

 
How does the decision-maker’s behavior look like if the probability perception is chosen to optimally compensate for 

the value function? We first ask the fundamental question whether optimized behavior is at all different from expected 

payoff maximization. Put differently, can the first-best be achieved despite the value function distortion, and if so, what is 

the first-best weighting function? We can give an answer to these questions as follows. 

 

Proposition 3. The first-best is achievable if and only if v G (x) = βG xα and v L ( y) = βL yα for some βG , βL , α > 0. In this case, 

ηFB (q) = (βL /βG )qα is a first-best weighting function. 

 

 
10 Proposition 3 can be seen as characterizing all possible representations of expected payoff maximization in our framework. It has been observed in the  

literature before that a given behavior can have multiple different representations. In the context of choice under uncertainty, for example, Dillenberger 

et al. (2017) show that behavior consistent with subjective expected utility theory has alternative representations involving stake-dependent probability 

distortions. 
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 Relation to prospect theory 

 
Different versions of prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) and rank-dependent 

models (Quiggin, 1982) use different specifications of the probability weighting function, but they all map absolute prob- 

abilities (not relative probabilities) into decision weights. Let πG : [0, 1] → [0, 1] be a function transforming the gain 

probability p into a gain decision weight πG (p) and let πL : [0, 1] → [0, 1] likewise transform the loss probability 1 − p 

into a loss decision weight πL (1 − p). The term decision weight is used because πG (p) and πL (1 − p) do not necessarily 
sum up to one and thus are not necessarily subjective probabilities.11 The decision maker would then accept (q, x, y) if 

πG (q/(1 + q))v G (x) − πL(1/(1 + q))v L ( y) ≥ 0. 
The absolute weighting functions πG and πL relate to our relative weighting function η as follows. On the one hand, any 

given pair (πG, πL) uniquely induces 

 
η(πG ,πL ) 

πG (q/(1 + q) 
(q) = . (6) 

πL(1/(1 + q)) 

The converse is not true, because there are different pairs of absolute weighting functions (πG, πL) that implement a given 

relative perception η. Hence there is not a unique way of representing the optimal relative weighting η∗ in terms of absolute 
weighting functions, except if we impose additional requirements. A natural such requirement is that the decision weights 

indeed sum up to one and can be interpreted as probabilities. In our context, where prospects have only two outcomes, this 

adds the constraint πG (p) = 1 − πL(1 − p), where p = q/(1 + q). With this constraint, equation (6) can be solved uniquely 
for 

η
  

1 
p 

p

  
 

 

 

 η 
p) = 

  1  
. (7) 

πG ( ) = 

1 + η 
 p   

, πL ( 

1−p 1 + η 
 

1−p
 

 

Now consider first the case without loss aversion, so that the optimal η∗ satisfies the optimality condition (4). Straight- 
forward calculations reveal that 

πη
∗ 

(p)  p ⇔ p  
1 

, 
 

k 2 

for both k = G, L and for almost all p ∈ (0, 1). This corresponds to the key property of prospect theory that small proba- 

bilities are overweighted and large probabilities are underweighted. For instance, the specific function ηFB (q) = (βL /βG )qα 

from Proposition 3 with βL = βG (case without loss-aversion) gives rise to the probability weighting function 

ηFB  ηFB pα 

πG  (p) = πL  (p) = 
pα + (1 − p)α , 

which has been studied by Karmarkar (1978, 1979). In Fig. 2, it is depicted for the case when α = 1/2. Observe that this 

solution is reflective, i.e., gain and loss probabilities are treated equally (πG = πL ). Reflectivity has received attention both 
in the theoretical and the empirical literature (Prelec, 1998).12 

Consider now the case with loss-aversion, so that η∗ satisfies condition (5). Then, by defining p¯ = q¯/(1 + q¯), Proposition 2 

implies that there exists p¯ > 1/2 such that 

π
η∗ 

(p)> p, for almost all p ≤ p¯ . 

In other words, gain probabilities are optimally overweighted whenever they are not too large. Correspondingly, for the loss 

probabilities we have that πη∗ 

(p) < p for almost all p > 1 − p¯ , so that loss probabilities are underweighted whenever they 
are not too small. It also follows that the optimal weighting must be non-reflective if there is loss aversion. In Appendix C 

we show that a relative weighting function η can be implemented reflectively if and only if η(1/q) = 1/η(q) for all q ∈ R+. 

With loss aversion this is impossible for the optimal η∗, because we have η∗(1/q) > 1/q > 1/η∗(q) for almost all 1 ≤ q ≤ q¯ . 
Intuitively, as argued before, the wedge between the perception of gains and losses drives a second-best wedge between the 

 
11 The original version of prospect theory (Kahneman and Tversky, 1979) assumes πG = πL (reflectivity) but does not require that the decision weights 

sum up to one. Rank-dependent models (Quiggin, 1982) use a formulation which ensures that the weights do sum up to one. Cumulative prospect theory 

allows for πG /= πL and does not require that distorted gain and loss probabilities sum up to one. 
12 If probability weighting is reflective and the weights π(p) and π(1 − p) always sum up to one, then the function π must necessarily be symmetric. 

The literature has also studied reflective but non-symmetric functions such as π(p) = e−[(− ln p)α ] with 0 < α < 1 (see Prelec, 1998). While the decision 
weights cannot always sum up to one in that case, this function still implements a relative perception η that satisfies our necessary optimality condition 

(4). 
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i=1 

π 

 

 
 

Fig. 2. Weighting function of Karmarkar (1978, 1979). 

 

perception of the associated probabilities. To understand the direction of this wedge, consider again ηFB (q) = (βL /βG )qα , 
now for βL > βG . The following “linear in log odds” functions (Gonzalez and Wu, 1999) are the unique implementation of 

ηFB for which the decision weights sum up to one: 
 

ηFB  (βL /βG )pα 
 

ηFB  (βG /βL )pα 

πG  (p) = 
(βL /βG )pα + (1 − p)α 

, πL  (p) = 
(βG /βL )pα + (1 − p)α 

.
 

 
3. Probability weighting for more general prospects 

 
Working with simple prospects made the analysis tractable but poses the question to what extent our results are robust. 

Since models with more general prospects become hard to solve analytically, we present a numerical example in this section. 

Assume that a prospect consists of a vector of payoffs z ∈ Rn, n ≥ 2, where z = (z1, ..., zn) with z1 < ... < zk < 0 < zk+1 < 
... < zn for 1 ≤ k < n, so that there are k possible losses and n − k possible gains. The associated probabilities are given by 

p ∈ ]0, 1[n, where p = (p1, ..., pn) with 
Σn  pi = 1. The previous model is a special case for n = 2 and k = 1. The fitness 

mapping is given by F (p, z) = p · z, where “·” represents vector multiplication, and the optimal acceptance set P+ is defined 

as before. Let π be a weighting function that assigns decision weights π (p) = (π1(p), ..., πn(p)) to prospects. Assume that 

U π (p, z) = π (p) · V (z) is the decision-makers’s utility from prospect (p, z), where V (z) ∈ Rn denotes the vector obtained 

by mapping z pointwise through a value function V : R → R. We then obtain the actual acceptance set P+ of prospects 

with U π (p, z) ≥ 0. The optimization problem we are interested in is given by 

 
max 
π 

 

F (p, z)h(p, z)d(p, z), 

+ 
π 

where π is chosen from some set of admissible functions. 

Our following results are for two gains and two losses (n = 4, k = 2). We employ a value function given by v G (z) = zα 

and v L (z) = γ zα , and we assume that nature offers prospects according to a uniform prior.14 For each combination of α ∈ 

 
13 Several empirical studies have concluded that, to compensate for a loss of any given size, individuals require a gain of roughly twice that size (see e.g. 

Tom et al., 2007). With the functions v G (x) = βG xα and v L ( y) = βL yα this is captured by βL /βG = 2α , which we approximate by 3/2 for the case when 

α = 1/2. 
14 Our numerical analysis is based on a finite model version. We discretize the interval [0, 1] of probabilities into a grid of size np , i.e., we allow for 

probabilities 0, 1/np , 2/np , ..., 1. We can then generate the set of all probability vectors p = (p1, p2, p3, p4) based on this grid. Analogously, we allow for 

∫ 

P 
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Fig. 3. Non-reflective weighting for α = 1/2 and βL /βG = 3/2. 

 
 

{1, 3/4, 1/2, 1/4, 1/10} and γ ∈ {1, 3/2} we search for the optimal weighting function within a rank-dependent framework 

(Quiggin, 1982). There, the restriction is imposed that there exists a reflective function w : [0, 1] → [0, 1] which transforms 
cumulated probabilities.15 Formally, 

,
Σi 

, ,
Σi − 1  

,
 

πi(p) = w ,  
j=1 

pi , − w ,  
j=1 

pi , . 

 

Table 1 contains the results when we use the function w(p) = δpβ /(δ pβ + (1 − p)β ) and search for optimal values of 

β and δ in the range [0, 2], so that linear, S-shaped, and inverse S-shaped weighting is admitted.16 The first main column 
refers to the case without loss aversion (γ = 1). If we additionally assume that payoffs are perceived linearly (α = 1), the 

optimum does not involve any probability weighting (β∗ = δ∗ = 1). The corresponding behavior is first-best, yielding the 

largest possible fitness level F¯ = 0.2714. We now introduce S-shaped payoff valuation by decreasing α towards zero. As 
the table shows, the optimal exponent of the weighting function then decreases, which means that probability weighting 

should become increasingly more inverse S-shaped.  

 
4. Discussion 

 
We conclude by pointing out an interesting avenue for future empirical research. Since our analysis postulates that 

probability weighting is a complement to payoff valuation, it suggests that probability distortions are more pronounced for 

agents whose value function deviates more strongly from linearity. There seem to be few, if any, empirical studies that 

speak to this prediction about the correlation between the parameters of the two functions. Some studies have sample sizes 

 
payoffs between −2 and +2, discretized into a grid of size nz. The set of all payoff vectors z = (z1, z2, z3, z4) can then be generated for that grid, and the 

set of all prospects is made up of all possible combinations of probabilities and payoffs. We use np = nz = 10. The numerical calculations were performed 
in GNU Octave, and the script is available upon request. 
15 Cumulative prospect theory (Tversky and Kahneman, 1992) uses a similar formulation, where an inverse of cumulated probabilities is transformed for 

gains. We can obtain similar numerical results in this framework with non-reflective weighting. 

16 The search is carried out in two stages. First, we decompose [0, 2] into a grid of size 2ng for ng = 12 and identify the optimum on that grid. As a 
second step, we search the area around this optimum more closely, by again decomposing it into a grid of the same size. 
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Table 1 

w(p) = δpβ /(δ pβ + (1 − p)β ). 

α γ = 1    γ = 3/2  

 β∗ δ∗ Fitness  β∗ δ∗ Fitness  

1 1.0000 1.0000 0.2714  1.0069 0.6944 0.2713  

3/4 0.7708 1.0000 0.2713  0.7708 0.6875 0.2712  

1/2 0.5208 1.0000 0.2707  0.5208 0.6806 0.2705  

1/4 0.2639 1.0000 0.2690  0.2569 0.6736 0.2688  

1/10 0.1042 1.0000 0.2672  0.1042 0.6667 0.2669  

 
 

 
Fig. 4. Numerical result for α = 1/2, γ = 3/2. 

 

 
that are too small to make meaningful correlation statements,17 others do not address the question for different reasons.18 

Rieger et al. (2011) present estimated parameters for 45 countries, using the CRRA value function with different exponents 

for gains and losses, and a weighting function of the form 

 

π(p) = pα/[pα + (1 − p)α ]1/α. 

Based on their estimates (Table 2, p. 7) we obtain a correlation of about +0.23 between the weighting parameter and 

the gain exponent, and of about +0.02 for the loss exponent. These findings look promising but also suggest the need for 
additional empirical research. 

 
Declaration of competing interest 

 
Gonzalez and Wu (1999) estimate parameters of the CRRA value function and the linear in log odds weighting function for 10 subjects. Using their 

results (Table 3, p. 157), we obtain a value of about −0.05 for the coefficient of correlation between the exponents of the value and the weighting function. 
Hsu et al. (2009) fit the CRRA value function together with the one parameter Prelec function for 16 subjects. Based on their estimates (Table S4, p. 13 

online supplementary material), we obtain a coefficient of correlation of about +0.04. 
18 Bruhin et al. (2010) estimate a finite mixture model in which 448 individuals are endogenously grouped into different behavioral categories. They 

find that two such categories emerge: 20% of all individuals maximize expected payoffs, using linear value and probability weighting functions, while 80% 

exhibit inverse S-shape probability weighting. However, Bruhin et al. (2010) find that the value function of the group that weighs probabilities non-linearly 

is not convex for losses. Qiu and Steiger (2011) estimate value and weighting functions for 124 subjects and conclude that there is no positive correlation. 

Their measure of the probability weighting function is, however, the relative area below the function, which captures elevati on rather than the curvature 

property that we are interested in. 
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Appendix A. General approach to optimal probability weighting 
 

 Generalized model 
 

As in the body of the paper, a prospect (q, x, y) ∈ P = R3 

 

 
consists of a gain x > 0, a loss y > 0, and a relative gain 

probability q > 0. The following assumption specifies the substance of our generalized decision-making model. 

 
Assumption 1. (i) The decision-maker accepts prospect (q, x, y) if and only if 

η(q) ≥ W (x, y), 

where η : R+ → R+ is a measurable probability weighting function and W : R2 → R+ is a payoff valuation function. 

(ii) W (x, y) is continuously differentiable with ∂W /∂x < 0 and ∂W /∂ y > 0, and it satisfies limy→∞ W (x, y) = ∞, 

limy→0 W (x, y) = 0, limx→∞ W (x, y) = 0, and limx→0 W (x, y) = ∞. 

 
Remark 1. In the body of the paper, a decision rule based on the utility function 

U (q, x, y) =

 
 η(q) 

  

v (x) −

 
   1 

  

v ( y) 
η 

1 + η(q) 
G 

1 + η(q) 
L

 

is considered, where vi (for i = G, L) is continuously differentiable, strictly increasing, strictly concave, and satisfies 

limz→0 vi(z) = 0. The prospect (q, x, y) is accepted if Uη(q, x, y) ≥ 0. This amounts to the case W (x, y) = v L ( y)/v G (x). 

The assumption that limy→∞ W (x, y) =∞ and limx→∞ W (x, y) = 0 implies that v G and v L cannot be bounded. This as- 
sumption is made for simplicity only, and analogous results can be obtained in an extended model that allows for bounded 

value functions. 

 
The fitness function F : P → R is given by 

F (q, x, y) =

 
 q 

 

x −

 
  1 

  

y. 
 

We denote by P+ = {(q, x, y) ∈ P|q ≥ y/x} the subset of prospects that should be accepted in order to maximize expected 

fitness. Let P+ = {(q, x, y) ∈ P|η(q) ≥ W (x, y)} be the set of prospects that the decision-maker actually accepts. Prospects 

are drawn according to a strictly positive density h on P (for which F¯ is finite), and thus the expected fitness maximization 

problem is given by 
 

max 
η 

F (q, x, y)h(q, x, y)d(q, x, y). (8) 

+ 
η 

 

We investigate this problem under different assumptions in the following subsections. 

 
 Optimal weighting without loss aversion 

 
We first add an assumption that captures the S-shape of the valuation function. 

 
Assumption 2. W (x, y)  y/x if and only if y/x  1. 

 
 

19 It is an interesting question in how far the human brain processes probabilities separately from the evaluation of gains and losses. In an fMRI study, 

Berns et al. (2008) find behaviorally meaningful neural correlates of non-linear (inverse S-shape) probability weighting. They show that “the pattern of 

activation could be largely dissociated into magnitude-sensitive and probability-sensitive regions” (p. 2052), which they explicitly interpret as evidence for 

the hypothesis that “people process these two dimensions separately” (p. 2055). The only region that they found activated by both payoffs and probabilities 

is an area close to the anterior cingulate cortex, which they see as a “prime candidate for the integration of magnitude and probability information” (p. 

2055). Note however that there also exists evidence of neural activity responding to both probabilities and payoffs, e.g. by Platt and Glimcher (1999) who 

study monkey neurons in the lateral intraparietal area. There are several other neuroscience studies that have also examined the neural basis of probability 

weighting. Tobler et al. (2008), for instance, investigate the coding of probability perception for non-choice situations. They also provide a literature review. 

See also Zhong et al. (2009a,b). Fehr-Duda et al. (2010) report an experimental instance of non-separability of payoffs and probabilities. 

20  After rewriting the decision rule in Assumption 1 (i) as η(q) − W (x, y) ≥ 0, it becomes reminiscent of the functional representation of a possibly 
non-transitive consumer in Shafer (1974). We are grateful to a referee for pointing this out. 

∫ 

P 
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+ 

∞ 

+ 

∫ 

⎦ 

∂r 

∞ 

⎣
⎢ 

x̃ ( y,r) 

 

Assumption 2 requires a strictly enlarged (compressed) perception of the loss to gain ratio whenever the gain is strictly 

larger (smaller) than the loss. Its symmetry implies W (z, z) = 1 for all z ∈ R+ and therefore precludes loss aversion. 

 

Remark 2. In the multiplicative utility model, Assumption 2 requires that v G = v L = v and therefore W (x, y) = v( y)/v(x). 
It is then satisfied by concavity of v. 

 

Proposition 4. Under Assumptions 1 and 2, any solution η∗ to (8) satisfies 

η∗(q)  q ⇔ q  1, for almost all q ∈ R+. 

Proof. Let Assumptions 1 and 2 be satisfied, and consider a prospect with relative probability q and loss y. How will 

a decision-maker behave who employs the functions η and W , depending on x? We can implicitly define a function x˜ : 

R2 → R+ by 

W (x˜( y, r), y) = r 

for all y, r ∈ R+. Assumption 1 implies that x˜( y, r) is uniquely defined and continuously differentiable with ∂ x˜/∂ y > 0 and 

∂ x˜/∂r < 0 (by the implicit function theorem). The considered prospect will be accepted if and only if x ≥ x˜( y, η(q)). Hence 
expected fitness can be written as 

∫ 
⎡
∫ 

⎡  
∫ 

⎤ ⎤ 

R+ 

⎣
⎢

R+ 

⎢
⎣

x̃( y,η(q)) 

F (q, x, y)h(q, x, y )d x
⎥
⎦ d y

⎥
⎦  dq. 

For function η∗ to maximize this expression, we need η∗(q) ∈ arg maxr∈R Ф(r, q) for almost all q ∈ R+, where 

Ф(r, q) = 

∫

 

⎡ 

F (q, x, y)h(q, x, y )d x
⎥

⎤ 

dy. 
 

We obtain the derivative 

∂Ф(r, q) 
=

 

∂r 
R+ 

  

− 
∂ x˜( y, r)

  

F (q, x˜( y, r), y)h(q, x˜( y, r), y)

 

dy. 

Both −∂ x˜( y, r)/∂r and h(q, x˜( y, r), y) are strictly positive for all q, y, r ∈ R+. Now consider the remaining term 

F (q, x˜( y, r), y), which has the same sign as qx˜( y, r) − y. We claim that it is strictly positive for all y ∈ R+ when- 

ever r ≤ q < 1. We have W (x˜( y, r), y) = r by definition of x˜. When r < 1, Assumptions 1 and 2 then imply that 

x˜( y, r) > y, because W (x, y) is strictly decreasing in x and W ( y, y) = 1 must hold. Assumption 2 then further implies 

that W (x˜( y, r), y) > y/x˜( y, r), which can be rearranged to rx˜( y, r) − y > 0. Since x˜( y, r) > 0 and r ≤ q, this implies the 

claim qx˜( y, r) − y > 0. Hence we know that, whenever q < 1, we have ∂Ф(r, q)/∂r > 0 for any r ≤ q. This implies that 

η∗(q) > q must hold for almost all q < 1. Analogous arguments apply for the cases where q = 1 and q > 1.  □ 

 
 Optimal weighting with loss aversion 

 
To investigate the consequences of loss aversion, we replace Assumption 2 as follows. 

 

Assumption 3. There exists δ > 1 such that W (x, y) > y/x if y/x ≤ δ. 

 

 
Remark 3. In the multiplicative utility model, Assumption 3 is satisfied for various different specifications. For instance, 

consider the case where v G (x) = v(x) and v L ( y) = γ v( y) for a common function v and a parameter γ > 1 that measures 

the degree of loss aversion. For any y/x ≤ 1 we have W (x, y) = γ v( y)/v(x) > v( y)/v(x) ≥ y/x by concavity of v. Now let 

the bound be δ = γ . For any 1 < y/x ≤ δ we obtain W (x, y) = γ v( y)/v(x) ≥ ( y/x)v( y)/v(x) > y/x, so that Assumption 3 

is satisfied. As another example, consider the case where v G (x) = (x + 1)β − 1 and v L ( y) = ( y + 1)α − 1 for 0 <β  < α < 1 

∫ 

R+ 
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η∗ 

ηFB  

ηFB  

 

(adding and subtracting 1 ensures v G (z) < v L (z) for all z ∈ R+ ). For any y/x ≤ 1 we have W (x, y) = (( y + 1)α − 1)/((x + 
1)β − 1) > (( y + 1)β − 1)/((x + 1)β − 1) ≥ y/x due to 0 <β  < α < 1. Now set the bound δ = α/β. For any 1 < y/x ≤ δ we 

obtain W (x, y) = (( y + 1)α − 1)/((x + 1)β − 1) > ((x + 1)α − 1)/((x + 1)β − 1). The last term can be shown to be strictly larger 
than α/β (it converges to α/β as x → 0). Hence W (x, y) > α/β ≥ y/x, which again shows that Assumption 3 is satisfied. 

 

Proposition 5. Under Assumptions 1 and 3, there exists q¯ > 1 such that any solution η∗ to (8) satisfies 

η∗(q)> q, for almost all q ≤ q¯. 

Proof. The proof follows the one for Proposition 4, up to the point where we now need to show that there exists q¯ > 1 

such that qx˜( y, r) − y is strictly positive for all y ∈ R+ whenever r ≤ q ≤ q¯ . Set q¯ = δ for a bound δ  > 1 as described 

in Assumption 3. We have W (x˜( y, r), y) = r by definition of x˜. When r ≤ q¯ = δ, Assumptions 1 and 3 then imply that 

x˜( y, r) > y/δ, because W (x, y) is strictly decreasing in x and W ( y/δ, y) >δ  holds. Assumption 3 then further implies that 

W (x˜( y, r), y) > y/x˜( y, r), which can be rearranged to rx˜( y, r) − y > 0. Since x˜( y, r) > 0 and r ≤ q, this implies the claim 

qx˜( y, r) − y > 0. The rest of the argument is again as in the proof of Proposition 4. □ 

 

 First-best solutions 

 
We now investigate the assumptions under which the first-best is achievable, i.e., under which a solution η∗ to (8) 

induces a set P+ that coincides with P+ up to measure zero. 

 
Proposition 6. Under Assumption 1, the first-best is achievable if and only if there exists a function f : R+ → R+ such that W (x, y) = 

f ( y/x). Then, ηFB = f is a first-best solution. 

Proof. Step 1. Suppose that the first-best is achieved by ηFB . Using function x˜ defined in the proof of Proposition 4, we 

then have that P+  = {(q, x, y) ∈ P|x ≥ x˜( y, ηFB  (q))} and P+ = {(q, x, y) ∈ P|x ≥ y/q} coincide up to measure zero. 

This implies that, for almost all q ∈ R+, we have x˜( y, ηFB (q)) = y/q for almost all y ∈ R+, and hence for all y ∈ R+ by 

continuity of x˜. Substituting this into the equation that defines x˜ we obtain that, for almost all q ∈ R+, W ( y/q, y) = ηFB (q) 
holds for all y ∈ R+. Continuity of W then implies that there exists a function f : R+ → R+ (which coincides with ηFB 
almost everywhere) such that W ( y/q, y) = f (q) for all q, y ∈ R+. Now consider any pair x, y ∈ R+. We obtain W (x, y) = 
W ( y/( y/x), y) = f ( y/x). 

Step 2. Suppose that there exists a function f : R+ → R+ such that W (x, y) = f ( y/x). Under Assumption 1, f must be 

strictly increasing. With weighting function ηFB (q) = f (q) we then obtain ηFB (q)  W (x, y) ⇔ f (q)  f ( y/x) ⇔ q  y/x, 

so that P+  and P+ coincide and the first-best is achieved.  □ 
 

 
Remark 4. In the multiplicative model with W (x, y) = v L ( y)/v G (x), the first-best is achievable according to Proposition 6 

if and only if v L ( y)/v G (x) = f ( y/x) holds for all x, y ∈ R+. It follows from Lemma 1 in Appendix B that this is the case 

if and only if v G (x) = βG xα and v L ( y) = βL yα for βG , βL , α > 0 (the lemma is applicable after substituting a = x, b = y/x, 

and relabelling f1 = v G , f2 = f , f3 = v L ). In this case, ηFB (q) = (βL /βG )qα is a first-best weighting function. Hence the 
first-best can only be achieved if the functions used to evaluate gains and losses are of the specific CRRA form. In addition, 

loss aversion is compatible with the first-best only in multiplicative form with βG < βL . 

 
Appendix B. Multiplicative functions 

 
The following lemma is useful for the characterization of first-best solutions in the multiplicative utility model. The 

result is known in the literature on functional equations as the solution of the fourth Pexider functional equation (or power 

Pexider functional equation). 

 

Lemma 1. Three continuous functions fi : R+ → R, i = 1, 2, 3, satisfy the functional relation 

f1(a) f2(b) = f3(ab) for all a, b ∈ R+ (9) 
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π
  

1

 

+ 

1+q 
× 1 1+q 

× q 

  

 

if and only if 

f1(x) = β1xα, f2(x) = β2xα, f3(x) = β1β2xα for some α, β1, β2 ≥ 0. (10) 

A proof (of a slightly more general version) can e.g. be found in Section 8.4 of Efthimiou (2010, p. 142). The proof uses 

the solution to the power Cauchy equation, which is derived in Section 5.4 of the same book (p. 97f). 

 
Appendix C. Reflectivity 

 
The following lemma identifies a condition that is necessary and sufficient for reflectivity of probability weighting to be 

no additional constraint in our multiplicative utility framework. 

 
Lemma 2. A weighting function η can be implemented reflectively if and only if 

η(1/q) = 1/η(q), for all q ∈ R+. (11) 

Proof. Suppose η satisfies (11). Consider the reflective candidate weighting function πη(p) = η(p/(1 − p))/(1 + η(p/(1 − 
p))). It implements the relative perception 

πη
  

1 
q 

q

  
 

 η
  

1 
q 

q × 1+q
 
 

 

1 + η
  

1
1 

q × 
1+q

 
 

 

 η(q) 
 

1 + η(1/q) 
+ 

η
  

1
  = 

 
 

+ 1 
  

q 1+q
  ×

 

+ q 

  
1 1+q

 = 
1 + η(q) 

. 
η(1/q) 

Using (11) we obtain 

  η(q)   1 + η(1/q) 
 

η(q)2 
 

η(q) + 1
 

 

1 + η(q) 
= 

η(1/q) 1 + η(q) η(q) 
= η(q), 

which shows that πη  indeed implements η reflectively. Conversely, suppose η is implemented reflectively by some π , i.e., 

η(q) = π(q/(1 + q)/π (1/(1 + q)) for all q ∈ R+. Then 

 
η(1/q) = 

1/q 
 

+1/q 

   
1
   = 

 

π
  

1
1 

q 
  

q
 

 

 

1 η(q) 
  = / 

for all q ∈ R+, so η satisfies (11).  □ 
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