
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 30, Special Issue of Nov 2018)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

539  

 

Artificial Neural Network Prediction of Pervious Concrete 

Permeability and Compressive Strength 
1
*Subhashree Tripathy, 

2
Dibyalisha Rath 

1*
 Asst. Professor, Dept. OF Civil Engineering, NIT BBSR, 

Asst. Professor Dept. of Civil Engineering, GEC, BBSR 
1*

subhashree@thenalanda.com, dibyalisha.ratha01@gmail.com 

 

Abstract: 

A mixture of cement, aggregates, water, little to no particles, and occasionally admixtures is used to create pervious 

concrete. The main factor behind pervious concrete's resurgence in building is its hydrological feature. There has 

been a lot of research on plain concrete, but less on porous concrete, especially in terms of analytical predictive 

modelling of its permeability. Using artificial neural networks (ANN) based on laboratory data, two crucial 

characteristics of pervious concrete related to permeability and compressive strength are examined in this paper. In 

order to explain for the variability of permeability and compressive strength of a porous concrete, the proposed 

network is meant to depict a trustworthiness functional connection between the input independent variables. The 

general fit and replication of the data regarding the data points are fairly good, according to the Back Propagation 

model's results. The final model's R-square goodness of fit between predicted and observed values ranges from 

0.879 to 0.918; higher values were seen for permeability than compressive strength and for the train data set as 

opposed to the test data set. In the absence of laboratorial data, the findings can be used to forecast these two crucial 

pervious concrete properties. 
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1. Introduction 

Compared to conventional impervious pavements, 

pervious concrete has been suggested as an alternative 

pavement surface to help reduce runoff. Because 

pervious concrete has a high void content, storm water 

can pass through it and into the sub-base below instead 

of running off [Ferguson, 2005; Tennis, 2004]. 

Increased residential and commercial property usage 

as well as direct aquifer replenishment are two benefits 

of pervious concrete surfaces. In the past 20 years, 

areas with lower traffic loads, such as parking lots, 

road shoulders, airport taxiways and runways, street 

and municipal roads, have been covered with 

permeable concrete pavements if the subsoil 

conditions, drainage characteristics, and groundwater 

placement are adequate. Due to its numerous 

environmental advantages, such as those listed in 

[Nguyen et al. 2014], the usage of pervious concrete 

for the construction of secondary roads, parking lots, 

driveways, walkways, and sidewalks has steadily 

increased in recent decades. The groundwater supplies 

can be replenished as the storm water is quickly 

filtered into the soilThe soil below the surface may be 

kept moist, while the surface is permeable to air and 

water. It makes the road surface better. The pervious 

concrete pavement can absorb the noise of vehicles, 

which creates quiet and comfortable envi- ronment. 

1. The pervious concrete pavement materials have 

holes that can cumulate heat. The pavement can adjust 

the temperature and humidity of the Earth surface and 

eliminates the hot island phenomenon in cities. 

Hardened pervious concrete usually has a low com- 

pressive strength which in some cases (when porosity 

is limited to 15%) the compressive strength can in- 

crease to 28 MPa [Pala et al., 2007]. Pervious concrete 

can only be applied to squares, footpaths, parking lots, 

and paths in parks [Ghafoori and Dutta, 1995; Fukute, 

1998]. High range water reducer and thickening agent 

are introduced in the concrete to improve its strength 

and workability [Raffique et al. 2012]. Research on per- 

vious concrete is rapidly developing. However, in spite 

of studies conducted on the effects of aggregate grada- 

tion, there still appears to remain much to be learned 

about the effects its properties and gradations have on 

pervious concrete mixtures. Pervious concrete has been 

successfully utilized in the USA for over 40 years; the 

applications in cold climates only began around 2006 

due to the pervious concrete perceived lack of freeze– 

thaw durability [John and Vernon, 2013]. An important 

aspect of the performance of pervious pavements is the 

permeability of pervious concrete. Defined as a mea- 

sure of the ability to transmit fluid, most commonly 

water, a highly permeable concrete can help deposit ex- 

cessive water underneath it, or on the base or sub-grade 

layers of a pavement system. Due to its open structure, 

the strength of pervious concrete is lower than regular 

concrete. Although permeability is considered as one of 

the most important characteristics of pervious concrete, 

the strength of the structure should not be under-esti- 

mated. Most researches on pervious concrete are based 

on laboratory effort and linear regression analysis, and 

not much research has been conducted based on heuris- 

tic methods. In this paper, a heuristic method, artificial 

neural networks (ANN) is developed to predict the two 

major properties of pervious concrete, namely permea- 

bility and compressive strength. The proposed network 

is intended to represent a reliable functional relation- 

ship between the input independent variables account- 

ing for the variability of permeability and compressive 

strength of a pervious concrete as two output dependent 

variables. The main objective of this paper is, thus, to 

apply an ANN model trained by the valuable laboratory 

data to predict permeability and compressive strength 

of pervious concrete. 

 
2. Artificial neural Network 

ANN as generalization of mathematical models is 

derived primarily in analogy to biological nervous 

systems. A first wave of interest in neural networks 

emerged after the introduction of simplified neurons 

by McCulloch and Pitts [McCulloch and Pitts, 1990]. 

Neurons or nodes are the basic processing elements of 

neural networks. In a simplified mathematical model of 

a neuron, the effects of synapses are exerted by con- 

nection weights that regulate the effect of related in- 

put signals, and the nonlinear characteristic exhibited 

by neurons is represented by a transfer function. The 

neuron output is computed as the weighted sum of the 

input signals, transformed by the transfer function. The 

learning ability of a neuron is attained by adjusting the 
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weights according to the chosen learning algorithm. 

Consisting of many simple processing units (neurons) 

with dense parallel interconnections, an ANN can pro- 

vide meaningful answers even when the data to be pro- 

cessed include errors or are incomplete and can process 

information extremely rapidly when applied to solve 

real world problems [Lippmann, 1987]. The first stud- 

ies on ANN started in 1943, when McCulloch and Pitts 

defined artificial neurons for the first time to develop 

a cell model. Together with the developments in com- 

puter technology, the use of artificial neural networks 

has become more efficient after 1980 [Anderson and 

Brown, 1983; Hopfield, 1982; Lee, 2003]. In 1958, 

Frank Rosenblatt devised a machine called percep- 

output layer, as many as the desired number of values 

computed from the inputs [Wu and Lim, 1993]. Hidden 

layers may contain a large number of hidden processing 

units depending on the complexity of the phenomenon 

being modeled; however, all problems which can be 

solved by a perceptron can also be solved with only one 

hidden layer [Adhikary and Mutsuyoshi, 2006]. The 

process of a model based on neural network involves 

five main parts: (a) data acquisition, analysis, and prob- 

lem representation; (b) determining of architecture; (c) 

determining the learning process; (d) network training; 

and (e) network testing for generalization evaluation. 

The weighted sums of the input elements (net)
j 
are cal- 

culated using Eq. (1) 

tron that operated much the same way as human mind. 

An ANN is quite simple and small in size when com- 
(net) j 

n 

i 1 
wij xi  b (1) 

pared to the human brain, and due to its similarity to 

the human brain, it has some powerful characteristics 

in knowledge and information processing. Hence, an 

ANN can be a powerful tool for engineering applica- 

tions [Kewalramani and Gupta, 2006]. In recent years, 

ANN (single layer or multilayer) has been applied to 

various civil engineering problems ranging from the 

detection of structural damage, structural system iden- 

tification, modeling of material behavior, structural op- 

timization, structural control, ground water monitoring, 

and prediction of experimental studies, to concrete mix 

proportions [Adhikary and Mutsuyoshi, 2006]. 

 
 Architecture of neural network 

An ANN, basically, consists of three types of neuron 

layers: input, hidden, and output layers. In feed-forward 

networks, the signal flow is one way only: from input to 

output units, where the data processing can extend over 

multiple (layers of) units, but no feedback connections 

are present. Recurrent or feedback networks contain 

feedback connections allowing for signal flow in both 

directions. There are several other neural network ar- 

Where (net) is the sum of weight of the j
th

 neuron for the 

input received from the preceding layer with n neurons, 

w is the weight between the j
th

 neuron in the preceding 

layer, and x is the output of the i
th

 neuron in the pre- 

ceding layer. Weights are values that express the effect 

of an input set or another process element in the pre- 

vious layer on this process element; sum function is a 

function that calculates the effect of inputs and weights 

totally on this process element, and b is the bias and 

is used to model the threshold [Hola and K. Schabow- 

icz, 2005; Schaefer, 2006; Topcu and Saridemir, 2008]. 

Activation function is a function that processes the net 

input obtained from sum function and determines the 

cell output. The most common activation functions are 

ramp, sigmoid, and Gaussian function. In general, for 

multilayer receptive models (f(
.
)), sigmoid function is 

used. Figure 1 shows a typical neural network with in- 

put, sum function, sigmoid activation function, and out- 

put. The neuron output (out)
j 

is calculated employing 

Eq. (2) with a sigmoid function as follows [Adhikary 

and Mutsuyoshi, 2006; Wu and Lim, 1993; Schaefer, 

2006]: 

chitectures (Elman network, adaptive resonance theory 

maps, competitive networks, etc.), depending on appli- 
(out) j  f (net) 

1 
 

 

1 e
(net ) j 

(2) 

cation properties and requirements. The multilayer per- 

ceptron is the most widely used type of neural network, 

which is both simple and based on solid mathematical 

calculation. The input layer consists of as many neurons 

as the number of input variables of the problem, and the 

Where a is a constant used to control the slope of the 

semi linear region. The sigmoid nonlinearity is activat- 

ed in every layer except in the input layer [Hola and K. 

Schabowicz, 2005; Topcu and Saridemir, 2008; Hagan, 

1996]. The connection weights and bias values are ini- 

tially chosen as random numbers and then fixed by the 
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results of the training process. Many alternative training 

processes are available; however, a few are used widely 

like back propagation scheme. The goal of any train- 

ing algorithm is to minimize the root mean square error 

(RMSE), defined as the difference between predicted 

outputs of the model and observation outputs (used in 

the training dataset). 

 RMSE 

input patterns are introduced to the network to produce 

the corresponding output compatible with the internal 

representation of the input/output mapping. 

(3) 

 
where P

i 
and O

i 
are the predicted and observed values, 

respectively. N is the total number of data points in vali- 

dation. 
 

 
Figure 1. Artificial neuron model 

 
 Back Propagation network 

The back propagation (BP) learning is an iterative 

search process adjusting the weights from output layer 

back to input layer in each run so that no further im- 

provement in RMSE value (or other parameter) is 

found. The BP algorithm calculates the error, employs 

it to adjust the weights first in the output layer, and then 

distributes it backward from the output to hidden and 

input nodes (Figure 2). The steepest gradient descent 

principle is employed to direct the change in weight to- 

wards the negative of the error gradient, reaching an 

output close to one of its extreme values (usually 0 or 

1). Eq. (4) presents this mathematically as: 

E 

 

 

 

 

Figure 2. Neuron weight adjustments 

 
3. Experimental program and Data Collection 

 Overview of the Sample Data 

The scope of this research is to obtain data by conduct- 

ing laboratory tests on pervious concrete samples, us- 

ing 13 different aggregate gradations from an aggregate 

source (Shahryar Akamshen), utilizing eight different 

water to cement (W/C) ratios. The sample data used for 

modeling includes 105 records. A data set was designed 

in the form of pairs of vectors, and the associated per- 

meability and compressive strength as target vectors. 

The input variables were: (i) fine aggregate (FA); (ii) 

porosity (Po); (iii) water-to-cement ratio (W/C); (iv) 

coefficient of uniformity (C
U
); and (v) the maximum 

specific gravity (G
mm

). The boundary range of inputs 

and output of records including minimum, maximum, 

mean, and standard deviation values are listed in Table 

1. Increasing the number of training samples provides 

more information on the shape of the solution surface(s) 

and thus, increases the potential level of accuracy that 

can be achieved by the network. Having too few data 

samples leads to poor generalization by the network. An 

optimal data set for training would be the one that fully 

represents the modeling domain and has the minimum 

number of repetitive samples (i.e. identical inputs with 

wn  wn1   
w

 (4) different outputs) in training. Thus, about 70% of the 

105 records were randomly chosen for model calibra- 

Where, w is the weight between any two nodes; ∆w
n

 

and ∆w
n-1 

are the changes in this weight at n and n-1 

iteration; a is the momentum factor; η is the learning 

rate; and E is the error term. 

The final connection weights are kept fixed, and new 

tion (training), 15% for validation, and the rest (15%) 

were kept for model test. The training data set is used 

to compute the gradient and update weights and biases. 

The error in the validation sets is monitored during the 

training process to prevent over-fitting of training data. 

1 

N 


N 

(P  O ) 2 

i i 

i 1 
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The error in the test sets is not used during training, but 

it is used to compare different models. 

 
Table 1. Boundary range of inputs and output of records 

 

 

Mix components 

 

Min 

 

Max 

 

Mean 

 

Std Dev 

 

Unit 

Input (independent variables)      

Fine aggregate (FA) 0 53 15.04 14.76 % 

Porosity (Po) 16.4 30.8 24.92 2.65 % 

W/C 0.27 34. 0.31 0.03 - 

Coefficient of uniformity (C
U
) 1.2 3.28 2.28 0.73 - 

G
mm 

2500 2780 2630 80 Kg/m3 

 

Output (dependent variables) 
      

Permeability (P) 0.33 13 4.23 2.47 mm/sec  

Compressive Strength (CS) 6.55 23.56 13.55 3.05 MPa  

 
 Testing Program 

As PC contains much higher hydraulic permeability 

than ordinary concrete, conventional methods which 

are used to evaluate the permeability of normal con- 

crete cannot be directly applied. Therefore, based on 

[Neithalath, Weiss, and Olek, 2006], a falling head 

permeability test device was mounted to estimate the 

permeability of the cylindrical samples (Figure 3). To 

prevent unsaturated overflow during the test, drainage 

where, a= the average cross-section of the graduated 

cylinderA= the average cross-section of the test sample 

L= the length of the specimen. 
 

 

Figure 3. Falling head permeability cell to measure 

hydraulic conductivity 

 

The gradation specifications used followed the guide- 

lines of ASTM C 33. These aggregate gradations fit the 

specifications of the single-sized ½ inch, #67-I, #67, 

A12.5-C, A12.5, single-sized Ǫ inch, A9.5-C, A9.5, 

#78-C, #78-C, and single sized #89-C, #89-F and #89. 

Uniformity coefficient (C
U
) dominated the effects of ag- 

gregate gradation where this parameter is defined as: 
D 

pipe was 10 mm overhead compared from the top of 

the specimen. A graduated acrylic cylinder of 400 mm 

CU     60  

D
10 

where, 

(6) 

long was fixed to the top of the specimen assembly and D
60 = the diameter of aggregate corresponding to 60% 

clamped tightly to prevent water leakage. Water level 

was monitored during the test by reading the level in 

the graduated cylinder. To remove the air trapped in the 

specimen and ensure that the specimen was completely 

saturated, it was conditioned via allowing the water to 

drain out through the pipe until it was leveled in the 

graduated cylinder and the drain pipe. Having the valve 

closed, the graduated cylinder was filled with water. 

After opening the valve, the time (t) required for the 

water level to fall from an initial head of 350 mm (h1) 

to a final level of 50 mm (h2) was measured in seconds. 

This procedure was repeated three times, and the aver- 

age t was used for calculation purposes. Average coef- 

ficient of permeability (k) was figured out using Eq. 1, 

which follows Darcy's law and assumes laminar flow 

[Shirgir, Hassani, and Khodadadi, 2011]. 

finer D10 = the diameter of aggregate corresponding to 

10% finerThe maximum specific gravity test, ASTM 

D 2041 (Rice Test), although specified for bituminous 

paving mixtures according to the ASTM standard, was 

deemed valid since pervious concrete is a relatively 

new concept for which specific standards are still being 

tested and developed. Also, loose matured cement coat- 

ed pervious concrete aggregate is similar to, in form, 

loose pervious asphalt or a bituminous paving mixture 

which is essentially loose aggregate coated with binder 

which compares to the loose aggregate coated with ce- 

ment paste. The loose cement coated aggregate was 

oven-dried with a minimum mass of 1500 g (each was 

placed in two metal bowls). The sample weights were 

taken, and water with a temperature of approximately 

25 °C was added to the bowls to completely cover the 

a.L h 
.ln( ) 

  agitation device, and the air trapped in the sample 
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was removed and later the bowl and sample submerged 

weight were recorded as documented in the ASTM D 

2041 standard, Section 9.4 through 9.5.1. Calculations 

for the maximum specific gravity were conducted based 

on the bowls used under water determination: 

den layer. Based on RMSE (Root Mean Square Error), 

it can be observed that the network with seven neurons 

(BP 5-7-2) in one hidden layer results in a stable and 

optimum network. 

 

Gmm 
A 

 

 

A  (C  B) 
(7) 

where, 

G
mm 

= maximum specific gravity of the mixtureA = 

mass of the dry sample in air, gB = mass of bowl under 

water, g C = mass of bowl and sample under water, g3.3 

 

 Pre-processing of Data 

The data was pre-processed by Principal Component 

Analysis (PCA) technique to identify and delete the in- 

significant variables; however, the PCA results showed 

that all five input factors (listed in Table 1) are signifi- 

cant. It is generally recommended to normalize the in- 

put and output data before presenting them to the net- 

work. In this research, a linear normalization as Eq. (8) 

was used to limit the variation of the variables to the 

interval (0, 1): 

Figure 4. Performance of BP with different number of 

hidden neurons 

A further test on whether additional second hidden lay- 

er could improve the network performance was carried 

out, in which the number of seven neurons in the first 

hidden layer was fixed and various numbers of neurons 

in the second hidden layer were used. BP network hav- 

ing the structure 5-7-3-2 (seven neurons in the first and 

three neurons in the second hidden layer) produced the 

best results; however, still not as good as the one-layer 

S  (V Vmin ) / (Vmax Vmin ) (8) network with seven neurons presented in Figure 5. 

Where, S is the normalized value of the variable; V, 

V
min

, and V
max 

are variable, minimum, and maximum 

values, respectively. 

 

 Model Construction and Performance Evaluation 

There are no fixed guidelines to determine the best ar- 

chitecture of the network, and hence this has to be done 

by the trial-and-error method. The network ability to 

separate the data is affected by the number of hidden 

neurons. A large number of hidden neurons will ensure 

correct learning, and the network is able to correctly 

predict the data it has been trained on, but its perfor- 

mance on new data and its ability to generalize are com- 

promised. The number of hidden neurons is a crucial 

decision. BP networks with one and two hidden lay- 

ers and varying number of neurons were developed. A 

parametric study was carried out by changing the num- 

ber of neurons in the hidden layers to test the stability of 

the network. Figure 4 shows the performance of the BP 

networks with various numbers of neurons in one hid- 

 

 

 

 

 

Figure 5. Optimum neural network (NN 5-7-2) for the 

study problem 

 

4. Results and Discussion 
The same mixtures were tested for bulk density, com- 

pressive strength, and permeability coefficient in a pre- vious 

study [Gesoglu et al. 2014]. The results of com- pressive 

strength showed that the pervious concrete was observed 

when waste rubber was replaced with single sized natural 

coarse aggregate [Gesoglu et al., 2014]. Figures 6 and 7 

show the scatter plots of predicted ver- sus observed values 

for the BP network depicted in Fig- 
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ure 5 for the train and the test data set, respectively, 

for permeability (P) and compressive strength (CS) of 

porous concrete. As observed, the general fit and rep- 

lication of the data regarding the data points are quite 

fine. For further analysis of the results, Table 2 reveals 

the performance measures of the BP networks. The R- 

square goodness of fit measures of predicted versus ob- 

served values range between 0.879 and 0.918 for the 

final model of this study (5-7-2); higher values were 

obtained for P as compared with CS and for the train 

data set as compared with the test data set. Interest- 

ingly, not much decrease is observed in this measure 

(R-square) for the test data (0.006 and 0.043, for P and 

CS, respectively).The RMSE measures follow more or 

less the same pattern, having the best (least) value for 

P and train data set. The difference between the train 

and test data is quite modest (0.143 and 0.107 for P and 

CS, respectively). Relative error measures (maximum, 

mean, and minimum) are also reported in the table. The 

range of relative error is larger for P and for train data; 

however, the mean is, quite expectedly, higher for the 

test data as compared to the train data. Regarding the 

increase in mean relative error from the train data, P 

is much better modeled and predicted (less than 5 % 

increase from the train data) than CS (more than 50 %). 

Table 2 compares the results of the two network struc- 

tures (5-7-2 and 5-7-3-2) discussed in section 3-4 based 

on the performance measures. The one-layer network is 

revealed to be generally preferable to the two-layer net- 

work, despite the additional hidden layer. Figures 8 and 

9 show the predicted and observed values for the BP 

network depicted along with their error, by data point. 

Figure 8 depicts P for both the train data set and the test 

data set, whereas Figure 9 depicts this for CS of pervi- 

ous concrete. The absolute error shaded in these figures 

on the horizontal axis varies between -2 and 2, indicat- 

ing rather small error for both the train and test data, de- 

spite the observed variations (in P and CS). It can, thus, 

be concluded that the neural network model proposed 

in this paper is generally a robust model with high pre- 

dictive power which can be used to predict P and CS of 

pervious concrete based on five input variables. 

 

 
Figure 6. Scatter plot of predicted vs. observed values of Permeability for BPNN (5–7–2) 

 

Figure 7. Scatter plot of predicted vs. observed values of Compressive Strength for BPNN (5–7–2) 
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Figure 8. Comparison of predicted & observed values 

of Permeability for BPNN (5–7–2) model 

Figure 9. Comparison of predicted & observed values 

of Compressive Strength for BPNN (5–7–2) model 
 

Table 2. Performance measures of BP networks of this study 

 
 

ANN Model 

Permeability Compressive Strength 

RMSE 

 
(mm/sec) 

Max 

 
(%) 

MAE 

 
(%) 

Min 

 
(%) 

 
R2 

RMSE 

 
(mm/sec) 

Max 

 
(%) 

MAE 

 
(%) 

Min 

 
(%) 

 
R2 

Train Data           

(BP(5-7-2 0.655 39.9 13.1 0.2 0.918 0.743 22 4.3 0.05 0.922 

(BP(5-7-3-2 0.639 46 16.3 0.5 0.879 0.831 25 4.1 01. 0.892 

Test Data           

(BP(5-7-2 0.798 35 13.55 1 0.912 0.850 20.2 6.5 0.1 0.879 

(BP(5-7-3-2 0.833 46.6 19.7 0.6 0.848 1.11 21.4 6.7 0.6 0.871 

 
 

5. Conclusion and Recommendations 

An important aspect of the performance of pervious 

pavements is the permeability of pervious concrete. 

Also, due to its open structure, the strength of pervi- 

ous concrete is lower than regular concrete. Although 

permeability is considered as one of the most important 

characteristics of pervious concrete, the compressive 

strength of the structure should not be under-estimated. 

An artificial neural network (ANN) was developed to 

predict these two major properties for pervious con- 

crete. The proposed network intended to represent a 

reliable functional relationship between the input in- 

dependent variables accounting for the variability of 

permeability and compressive strength of pervious 

concrete, based on the valuable laboratory data, gath- 

ered exclusively for this purpose. Results of the Back 

Propagation model indicate that the overall fit and rep- 
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lication of the observed laboratory data by the 

proposed model are quite fine. The R-square 

(goodness-of-fit measure) of predicted versus 

observed values range between 0.879 and 0.918 for 

the final model; higher values were obtained for the 

permeability, as compared with compressive strength, 

and for the train data set as compared with the test 

data set. The findings of the cur- rentstudy can be 

employed to predict the two important characteristics 

(permeability and compressive strength) of pervious 

concrete without the need to expensive and time 

consuming laboratory gathered data.This present 

research is limited by the number of data 

observations, due to time consuming and expensive 

nature of labora- tory data experiments. Thus, for 

further research, it is suggested to utilize more 

extensive and quantitative da- ta-sets considering 

admixtures, time duration, cement type, and a large 

number of test specimens. 
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