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Abstract 
The ideal production plan is chosen for the medium-term planning horizon using aggregate production 

planning (APP). Utilizing current resources efficiently while adapting to demand fluctuations is the 

aim of the APP. Fuzzy techniques have recently been used in APP with a focus on the nebulous nature 

of cost parameters. In this study, demand is considered fuzzy and the APP decisions are modelled by a 

bi-objective LP model that optimises production and workforce level costs. This is done in light of the 

significance of meeting customer demand in different periods at varied and variable rates. Decisions 

regarding the APP are made in two rounds: As the main contribution of this paper, the fuzzy model is 

converted to a crisp goal programming counterpart in the second round, and the APP decisions for the 

remaining horizon are updated based on the real demand experienced throughout the starting phases. 

The suggested model's validity is demonstrated utilising the Lingo and various sample problems. 
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1. Introduction 

Aggregate planning gives a comprehensive plan to respond to forecasted demand employing 

capacity of the organization effectively. For a 6 to 24-month planning horizon, mid-term 

production plans are provided in a framework dictated by long-term plans. Medium-term 

planning inputs are: demand forecasts, financial constraints, capacity constraints, strategic 

goals, and company policies. The output of mid-term production programs includes: labor force 

level, production rates, inventory levels that support the production plan, and the 

subcontracting and overtime levels and back orders. This plan sets the way in which the 

organization should devise its operational activities including operations, finance and 

marketing for a typical year. 
 

The achievement of a competitive match between capacity and demand will be advantageous 

in this regard. Except in cases where the plan automatically modifies itself in response to 

actual consumer feedback during execution in the planning horizon, such a match cannot be 

guaranteed in practise. According to our knowledge, the authors have not addressed this in 

relevant fields of research. As a result, this study examines adaptive aggregate production 

planning. Additionally, because of its incomplete and uncertain character, the demand is 

chosen to operate in a fuzzy mode rather than the model's cost parameters, which are 

typically presumed fuzzy in the literature. 

The remainder of the paper begins with a review of the literature before introducing the 

research methods, model, and its limitations in fuzzy and corresponding crisp modes in 

section 3. The model's applicability will be discussed in detail using a few numerical 

examples in the fourth section. Finally, a summary and recommendations for further study 
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will be provided. 

 

2. Literature review 

As Jamalnia (2017) reported in his thesis, the highest frequency of the published research on  

APP under uncertainty belongs to 2010-2016 with total frequency of 51.22%. Among the 

applied methodologies, the fuzzy mathematical programming is the most studied one with close 

to 50% relative frequency. In some real-world applications, parameters and input data such as 

demand, coefficient of resources and costs, are fuzzy because of incomplete or vague nature of 

data (Wang & Liang 2004). Fuzzy is a kind of ambiguity and there is no well-defined definition 

for its description, especially in places where people's judgments, evaluations, reasoning and 

learning play a critical role (Bellman and Zade, 1970). In 1976 Zimmerman (1978) first put 

forward the theory of fuzzy sets in conventional linear programming problems. Narasimhan 

(1980) described the application of the "fuzzy subset" methods for goal programming in fuzzy 

environments. This research proposed a fuzzy goal programming with multiple equal weight 

goals and developed a solution based on linear programming. Wang and Fang (2001) presented 

a fuzzy linear programming approach for solving the multi-objective aggregate planning in 

which product prices, subcontract costs, labor levels, production capacity, and market demand 

are fuzzy. Putting forward a close linkage between production and distribution, Aliev et. al.  

(2007) studied aggregate production–distribution planning in fuzzy environment. The goal is 

to maximize profits throughout the planning horizon, while market demand and production and 

storage capacities are identified as fuzzy random parameters. In their model, the fill rate or  

service level has been regarded as a fuzzy constraint. The authors claimed genetic algorithm 

(GA) as a better choice for tackling optimization problems containing fuzzy parameters and 

proposed a GA with binary coding and multipoint binary operators. Hu et al. (2007) 

investigated the application of fuzzy goal programming in multi-objective aggregate planning 

decisions with different priorities, and presented a modified genetic algorithm to solve the 

transformed model. Jamalnia et al. (2009) developed a hybrid fuzzy multi-objective nonlinear 

programming model with prioritization of various objectives in a fuzzy environment. They 

optimized customer satisfaction as a qualitative objective and costs of production, back order, 

inventory, and labor level changes as quantitative ones. In this research, the effect of learning 

is considered and the capacity of machinery and storage space is limited. The prioritization of 

the objectives is deterministic. The model has been modified with fuzzy goal programming and 

solved by GA. Bykasoglou and Genk (2010) presented a direct solution approach based on 

fuzzy ranking method and tabu search for solving fuzzy multi-objective APPs. This article 

shows how a multi-objective model of fuzzy APP can be solved directly without the need for 

the transformation process. Taghizadeh et al. (2011) introduced the application of the fuzzy 

multi-objective linear programming model in a multi-product and multi-period production 

planning problem, which simultaneously minimizes the net present value of production costs  

and maximizes the utilization of existing capacities. The proposed model includes production 

constraints such as available labor level, and maximum sub contract level. Ramezanian et al. 

 

In the field of production planning, the advanced planning systems focus on two key features; 

Integration and adaptability. These features are considerably interrelated aspects in order to 

achieving the effectiveness of planning efforts. While integration aims at breaking the 

hierarchies among long, medium and short term plans, adaptability searches for any quick and 

responsive change in an under execution plan. Table 1 summarizes the most important recent 

studies to explore the status quo of research on these features and context and optimization 

aspects as well. 
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Table 1. the summery of the recent studies in the field of APP 
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Exact-CPLEX 

 

Modarres et. al. (2016) 
 



  

× 
 

× 
Energy 

consumption 

 



 Goal attainment 
technique/Robust 

Optimization 

 

Vogel et. al. (2017) 
 



  



 

× 
Number of 

production 

lines 

  



 

Exact 

Entezaminia et. al. (2017) 
 

 × × 
Quantity of 

vehicles 
 

 Robust Optimization 

 

Makui et. al.(2016) 
 



  

× 
 

× 
Under- 

fulfillment of 

market demand 

  



 

Robust Optimization 

Jabbarzadeh et. al. (2018) 
 

 × × 
Postponement 

strategy 


 
Robust Optimization 

Altendorfer et. al. (2016) 
 

× × --- 
 


Exact- 

CPLEX/Simulation 

 

Aghezzaf ET. AL. (2016) 
 



  

× 
 

× 
Preventive 

maintenance 

  



An iterative MILP- 
based Solution 

Heuristic 

Nobari ET. AL. (2018) 
 

 × × 
Supplier 
selection 


 

MOICA; NSGA-II 

 

Khemiria et. al. (2017) 
  



 

× 
 

× 
Supplier 

selection 

  



analytical modelling 
/multi-criteria 

approach 

 
This Research 

 


  
× 

 


 
--- 

 


 A comprehensive 
framework regarding 

adaptability/ fuzzy 

goal programming 

 

As it is clear, there is little research on the adaptability of aggregate plan based on real data in 

conditions of ambiguity in demand. However, under these conditions and in practice, during  

the implementation of the plan, as Vogel et. al. (2017) emphasized, feedback from the master 

production schedule (MPS) to the APP is inevitable and the APP must be flexible according to 

the emerging conditions and at the same time it should guarantee the economic utilization of 

the resources. Therefore, the model presented in this paper can cover the existing gap in the 

related literature. 

3. Research methodology 
As shown in Fig. 1, the framework for achieving adaptive APP is formed in six main steps.  

These steps are explained in the following sections. 

 
 APP fuzzy LP model 

In this section, formulation of a linear programming model for the APP in fuzzy environments 

is discussed. This model consists of two minimization objective functions, taking into account 

the costs of producing products, inventory, backorder, setup, normal and overtime labor, hiring 

https://scholar.google.com/citations?user=x6R0E5wAAAAJ&hl=en&oi=sra
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𝑖𝑡 

𝑖𝑡 

 

and firing. In this model, market demand is considered as a fuzzy parameter. In the following, 

the indices, parameters, and variables used in the model are defined. 

 
 Indices 

 : The index of products (𝑖 = 1, 2... N) 

 : The index of periods in the planning horizon (𝑡 = 1, 2... T) 

 

 Model parameters 

𝐷  : Fuzzy demand for product 𝑖 in period 𝑡 

𝐶 : Production cost of each unit of product 𝑖 in period 𝑡 

 : Cost to hold a unit of product 𝑖 from period 𝑡 to period 𝑡 + 1 

𝜋𝑖𝑡: Cost of a unit of product 𝑖 backordered in the period 𝑡 

𝑆 : Setup cost to produce product 𝑖 in period 𝑡 

 : Cost of one man-hour of labor on regular time in period 𝑡 

𝑜 : Cost of one man-hour of labor on overtime in period 𝑡 

𝑖𝑡 : Cost of hiring a man-hour of labor in period 𝑡 

𝑓 : Cost of firing a man-hour of labor in period 𝑡 

𝑐 : Man-hour required to produce a unit of product 𝑖 

𝑐 : Man-hour required to setup the production system for producing a unit of product 𝑖 

𝜌: Proportion of regular working hours that is allowed to be employed on overtime 

 

 Decision variables 

𝑋 : Level of production of product 𝑖 in period 𝑡 

𝐼 : Level of net inventory of product 𝑖 in period 𝑡 

𝐼+ : Level of on-hand ending inventory of product 𝑖 in period 𝑡 

𝐼− : Level of back order of product 𝑖 in period 𝑡 

 : Level of man-hour employed on regular time in period 𝑡 

 : Level of man-hour employed on overtime in period 𝑡 

 : Number of man-hour hired in period 𝑡 

 : Number of man-hour fired in period 𝑡 

𝑦 : Binary variable to decide to produce product 𝑖 in period 𝑡 (𝑦𝑖𝑡 = 1) else 0 
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functions 

 

 

 

Converting Fuzzy 

model to deterministic 

APP model 

 

Relations (23)-(42) 

 

 

Solving APP model 

 

 

 

 

 
Relations (43)-(56) 

 
 

Revising and solving 

APP model 

Updating Demand Data 

 

 

 

 
Revising the 

upper and lower 

limits of objective 

functions 

 
Revising the level 

of fuzzy 

expectation of 

objective 

functions 

 

 

 
Revising and solving 
Adaptive APP model 

Relations (57)-(79) 

 

 

 

 
Figure 1. The research stages and its relevant methods 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 30, Special Issue of Nov 2018)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

34 

 

 

Using the above mentioned notations, the fuzzy LP model of research is presented in equations 

(1)-(12): 
 

𝑚𝑖𝑛 𝑍1 ≅ ∑𝑁 ∑𝑇 (𝐶𝑖𝑡𝑋𝑖𝑡 + 𝑖𝑡𝐼+ + 𝜋𝑖𝑡𝐼− + 𝑆𝑖𝑡𝑦𝑖𝑡) 
𝑖=1 𝑡=1 𝑖𝑡 𝑖𝑡 

 (1) 

𝑚𝑖𝑛 𝑍2 ≅ ∑𝑇 (𝑟𝑡 𝑅𝑡 +  𝑜𝑣𝑡𝑂𝑡 + 𝑡𝐻𝑡 +  𝑓𝑡 𝐹𝑡) 
𝑡=1 

 (2) 

 

Subject to: 
  

𝑋𝑖𝑡  + 𝐼𝑖𝑡−1  − 𝐼𝑖𝑡    =  𝐷 𝑖𝑡 

 

∀ 𝑖 ; ∀ 𝑡 
 

(3) 

𝐼𝑖𝑡 = 𝐼+ − 𝐼− 
𝑖𝑡 𝑖𝑡 ∀ 𝑖 ; ∀ 𝑡 (4) 

𝑅𝑡 − 𝑅𝑡−1 − 𝐻𝑡 + 𝐹𝑡 = 0 ∀ 𝑡 (5) 

∑(𝑐𝑝𝑖𝑋𝑖𝑡 + 𝑐𝑠𝑖𝑦𝑖𝑡) ≤ 𝑅𝑡 + 𝑂𝑡 ∀ 𝑡 (6) 

𝑂𝑡 − 𝜌𝑅𝑡 ≤ 0 ∀ 𝑖 ; ∀ 𝑡 (7) 

𝑋𝑖𝑡 ≤ 𝑀𝑦𝑖𝑡 ∀ 𝑖 ; ∀ 𝑡 (8) 

𝑋𝑖𝑡, , 𝐼+, 𝐼−, 𝑅𝑡, 𝑂𝑡 , 𝐻𝑡, 𝐹𝑡 ≥ 0 
𝑖𝑡    𝑖𝑡 ∀ 𝑖 ; ∀ 𝑡 (9) 

𝑅𝑡, 𝑂𝑡, 𝐻𝑡, 𝐹𝑡 ≥ 0 ∀ 𝑡 (10) 

𝐼𝑖𝑡 ∶ 𝐹𝐼𝑆 ∀ 𝑖 ; ∀ 𝑡 (11) 

𝑌𝑖𝑡 ∈ {0,1} ∀ 𝑖 ; ∀ 𝑡 (12) 

 
In this model, two categories of objectives are considered to optimize the APP decisions which 

are total production and total labor costs. Equation (1) is the objective function to minimize 

production and inventory costs. The four terms in this objective function are: production cost, 

inventory holding costs, cost of backorder, and set-up cost calculated for each product in each 

period and their total sum must be minimized. Equation (2) is the objective function to 

minimize labor costs. The three terms in this objective function are: cost of man-hour in regular 

times, cost of man-hour in overtimes, as well as costs associated with hiring and firing labor 

during the planning horizon. The constraint (3) is the material balance equation for each 

product in each period, in which the sum of input and output flows of each product in each 

period, are equal to the demand for that period. Constraint (4) calculates the net inventory 

variable in terms of on-hand inventory and the shortage variables in each period for each 

product. Constraint (5) establishes the balance of labor in each period. If we have a hiring 

period, we will have   −  𝑅𝑡−1 =  𝐻𝑡 ; and in case of firing, it is obvious that 𝑅𝑡−1 − 𝑅𝑡 = 
𝐹𝑡 . Constraint (6) provides an upper limit for the number of hours required to produce all 

products in terms of man-hours of regular and overtime in each period. Constraint (7) 

formulates the allowed upper limit for the use of overtime as a percentage of regular working 

hours. Constraint (8) ensures that if a production system is not launched for a particular product 

in each period, the level of production of that will be zero. Constraint (9) - (11) reflect the 

condition of being non-negative for all decision variables and being free-in sign for net 

inventory variable. Constraint (12) adjusts the set up variables to be binary. 
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 Identifying membership functions 

The above fuzzy multi-objective linear programming APP model can be transformed into a 

linear programming APP model using the membership functions provided for fuzzy constraints 

and fuzzy objective functions. Two types of membership functions for fuzzy constraint and  

fuzzy objectives will be introduced. 

 Creating membership function for right hand side 

For the equation constraints in the form of  𝑎𝑖𝑗 𝑥𝑗  =  𝑑 𝑖     ∀ 𝑖; the membership function of vector 

X is calculated based on the value of the left hand side which is labeled as y for convenience 

as follows: 
 

 −𝑦 ≤ 𝑑𝑖 − 𝑝 0 ل
𝑖 

I𝑦    −(𝑑𝑖−𝑝
−) 

𝑑   − 𝑝 < 𝑦 ≤ 𝑑
 

𝑖 − 

𝜇 𝑥  = 
𝑝− 𝑖 𝑖 𝑖 

𝑑(  ) 𝑖
+ 

❪ (𝑑𝑖+𝑝𝑖 )−𝑦 
𝑑   < 𝑦 ≤ 𝑑 + 𝑝+ 

I 𝑝+ 𝑖 𝑖 𝑖 
𝑖 

𝗅 0 𝑦 ≥ 𝑑𝑖 + 𝑝+ 
𝑖 

 

 
 

(13) 

 
For any vector X the membership of (𝑋) which gives the membership degree of realizing or 

satisfying the constraint for a particular, is calculated through equation (14) 
 

𝐷𝑖(𝑥) = 𝜇𝑖(∑𝑎𝑖𝑗𝑥𝑗) (14) 

 
For each, (𝑋) is a fuzzy set and the intersection of these sets for all 𝑖 ( ∩ 𝐷𝑖 ) is the solution 

space. 

 

 Creating membership function for objective functions 

The use of fuzzy sets in goal programming has the advantage that decision makers are allowed 

to set a vague expectation level. An objective with an ambiguous expectation level can be 

considered as a fuzzy goal. Three types of fuzzy goal programming can be considered, each 

containing a kind of fuzzy goal in the form of relations (15). 
 

 

𝐺𝑘 (𝑥) ≤   𝑔1 

𝐺𝑘 (𝑥) ≥   𝑔2 

𝐺𝑘 (𝑥) ≅ 𝑔3 

 
s.t: 

 

𝐴𝑋 ≤ 𝑏 

𝑋 ≥ 0 

𝑘 = 1, … , 𝑚 
𝑘 = 𝑚 + 1, … , 𝑛 
𝑘 = 𝑛 + 1, … , 𝑙 

 

 

 
 

(15) 
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The optimal point, X, meets all fuzzy goals and is still justified. 𝑔 is called the level of fuzzy 

expectation and 𝐴𝑋 ≤ 𝑏 is the set of deterministic constraints. 𝑚 objectives are to be at last 

equal to the desired goal of 𝑔1𝑘 , 𝑛 − 𝑚 objectives are to be at least equal to the desired goal 

of 𝑔2𝑘 and finally 𝑙 − 𝑛 objectives are to be exactly equal to the desired goal of 𝑔3𝑘 . Three 

types of linear membership function of fuzzy goals are defined as: 
 

1 𝐺𝑘(𝑥) ≤ 𝑔1𝑘 

𝜇 (𝑥) = {
𝑈𝑘−𝐺𝑘(𝑥) 

𝑔1𝑘 ≤ 𝐺𝑘(𝑥) ≤ 𝑈𝑘 
𝑍𝑘 𝑈𝑘−𝑔1𝑘 

0 𝐺𝑘(𝑥) ≥ 𝑈𝑘 

 
 

𝑘 = 1, … , 𝑚 

 

 
(16) 

 

 
 

1 𝐺𝑘(𝑥) ≥ 𝑔2𝑘 

𝜇 (𝑥) = {𝐺𝑘
(𝑥)−𝐿𝑘 𝐿𝑘 ≤ 𝐺𝑘(𝑥) ≤ 𝑔2𝑘 

𝑍𝑘 𝑔2𝑘−𝐿𝑘 

0 𝐺𝑘(𝑥) ≤ 𝐿𝑘 

 
 

𝑘 = 𝑚 + 1, … , 𝑛 

 
 

(17) 

 

 
 

0 𝐺𝑘(𝑥) ≤ 𝐿𝑘 

I𝐺𝑘(𝑥)−𝐿𝑘 𝐿𝑘  ≤ 𝐺𝑘(𝑥) ≤ 𝑔3𝑘 

𝜇𝑍 (𝑥) = 𝑔3𝑘−𝐿𝑘
 𝑘 𝑈𝑘−𝐺𝑘(𝑥) 

𝑔 ≤ 𝐺 (𝑥) ≤ 𝑈 

𝑈𝑘−𝑔3𝑘 
3𝑘

𝐺 
𝑘  

≥ 𝑈 
𝑘 

𝗅 0 𝑘(𝑥) 𝑘 

 
 

𝑘 = 𝑛 + 1, … , 𝑙 

 
 

(18) 

 

 
 Determining upper and lower bounds and the level of fuzzy expectation of objective 

functions 

In equations (16)-(18) the lower and upper bounds of each objective function  , 𝑈𝑘 are 

calculated by solving the research model which is discussed in section 3-1 converting any fuzzy 

constraint to its crisp equivalent. To do this, the right hand side will be replaced by its bounds 

to get  , 𝑈𝑘 as presented in equations (19) and (20) respectively and the generated crisp 

models will be solved to optimize each of objective functions separately. 
 

∑𝑛 𝑎𝑖𝑗𝑥𝑗 = 𝑑𝑖 − 𝑝− 
𝑗=1 𝑖 (19) 

 

 

 
 

∑𝑛 𝑎𝑖𝑗𝑥𝑗 = 𝑑𝑖 + 𝑝− 
𝑗=1 𝑖 (20) 

 

The level of fuzzy expectation is obtained similarly but by replacing the right hand side of 

fuzzy constraint with  . 
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𝑇 

𝑖=1 

 

 Converting Fuzzy model to deterministic one 

Using the method proposed by Chen and Tsai (2001), which allows decision makers to 

determine a desired achievement level or importance (or weight) for each of the fuzzy goals,  

the linear programming model for fuzzy APP will be converted to a deterministic problem 

maximizing the intersection of the objective functions and the feasible space. This method can 

ensure that higher-importance goals have higher degrees of achievement. To do this, a set of 

optimal achievement levels as constraints to the set of constraints is added in the form of 𝜇𝑘 ≥ 
 ; where 𝛼𝑘 is the optimal achievement level for the kth objective. 

I is defined as a set of linguistic values for the importance of different objectives as follows: 
 

𝑉𝐿𝐼: 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒, 𝐿𝐼: 𝐿𝑜𝑤 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒, 𝑆𝐿𝐼: 𝑆𝑙𝑖𝑔𝑡𝑙𝑦 𝐿𝑜𝑤 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒, 𝑀: 𝑀𝑒𝑑𝑖𝑢𝑚, 
𝐼 = { } 

𝑆𝐻𝐼: 𝑆𝑙𝑖𝑔𝑡𝑙𝑦 𝐻𝑖𝑔 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 , 𝐻𝐼: 𝐻𝑖𝑔 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒, 𝑉𝐻𝐼: 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 
 

Then, for each linguistic value, a trapezoid fuzzy number is considered as shown in Table 2. 

 
Table 2. Trapezoid fuzzy number for each linguistic value 

VLI LI SLI M SHI HI VHI 

(0,0,0.05, 
0.10) 

(0.05,0.10,0.2 
0,0.25) 

(0.20,0.25,0.3 
5,0.40) 

(0.35,0.40,0. 
50,0.5) 

(0.50,0.55,0.6 
5,0.70) 

(0.65,0.70,0.8 
0,0.85), 

(0.80,0.85,0.9 
5,0.95) 

 

Now the Liu and Wang (1992) method is applied to rank fuzzy numbers in order to determine 

precisely the degree of achievement for different goals. Trapezoidal fuzzy numbers are defined 

for each linguistic value as Ã = (𝛼, 𝛽, 𝛾, 𝛿) , so we have: 
 

 

𝛼𝑘 = 𝐼1(Ã𝑘) is assumed as the optimal achievement level of kth fuzzy objective. The optimal 

solution to the problem is obtained by maximizing the intersection of the objective functions 

and the feasible space. The intersection of fuzzy sets of objective functions and solution space, 

the min operator is used as shown in equation (22). 
 

Max min [⋂𝑚  𝐷𝑖(𝑥),  𝐺𝑖(𝑥)] 
𝑖=1 (22) 

Let   = ⋂  𝑖(𝑥),  𝐺𝑖(𝑥), so 𝜆 is maximized subject to λ ≤ 𝐺𝑖(𝑥) and𝜆 ≤ 𝐷(𝑥) . Finally, 

the fuzzy linear programming model becomes deterministic one as follows: 

I1(Ã) = 1 [𝛾 + 𝛿] 
T 2 

(21) 
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𝑀𝑎𝑥 𝜆  (23) 

𝑠. 𝑡: 
  

𝜆 ≤ 
𝑈𝑍1 −∑

𝑁     ∑𝑇     (𝐶𝑖𝑡𝑋𝑖𝑡+𝑖𝑡𝐼
++𝜋𝑖𝑡𝐼

−+𝑆𝑖𝑡 𝑌𝑖𝑡) 
𝑖=1    𝑡=1 𝑖𝑡 𝑖𝑡 

 

(𝑈𝑍1 −𝑔𝑍1) 

 
(24) 

𝜆 ≤ 
𝑈𝑍2 −∑

𝑇     (𝑟𝑡𝑅𝑡+𝑜𝑣𝑡𝑂𝑡+𝑡𝐻𝑡+𝑓𝑡𝐹𝑡) 
𝑡=1 

 

(𝑈𝑍2 −𝑔𝑍2 ) 

 (25) 

𝜆𝑝𝑖𝑡 ≤ 𝛽𝑖𝑡(𝑋𝑖𝑡 + 𝐼𝑖𝑡−1 − 𝐼𝑖𝑡) − (𝑑𝑖𝑡 − 
𝑝𝑖𝑡)) + (1 − 𝛽𝑖𝑡)((𝑑𝑖𝑡 + 𝑝𝑖𝑡) − (𝑋𝑖𝑡 + 
𝐼𝑖𝑡−1 − 𝐼𝑖𝑡 )) 

∀𝑖 = 1,2, … , 𝑁 ∀𝑡 = 1,2, … , 𝑇 (26) 

𝑋𝑖𝑡 + 𝐼𝑖𝑡−1 − 𝐼𝑖𝑡 = 𝜃1it(𝑑𝑖𝑡 − 𝑝𝑖𝑡 ) + 
𝜃2it𝑑𝑖𝑡 + 𝜃3it(𝑑𝑖𝑡 + 𝑝𝑖𝑡 ) 

∀𝑖, 𝑡 (27) 

𝜃1it ≤ 𝛽𝑖𝑡 ∀𝑖, 𝑡 (28) 

𝜃2it ≤ 1 ∀𝑖, 𝑡 (29) 

𝜃3it ≤ 1 − 𝛽𝑖𝑡 ∀𝑖, 𝑡 (30) 

𝜃1it + 𝜃2it + 𝜃3it = 1 ∀𝑖, 𝑡 (31) 

𝐼𝑖𝑡 = 𝐼+ − 𝐼− 
𝑖𝑡 𝑖𝑡 ∀𝑖, 𝑡 (32) 

𝑅𝑡 − 𝑅𝑡−1 − 𝐻𝑡 + 𝐹𝑡 = 0 ∀𝑡 (33) 

∑(𝑐𝑝𝑖𝑋𝑖𝑡 + 𝑐𝑠𝑖𝑦𝑖𝑡) ≤ 𝑅𝑡 + 𝑂𝑡 ∀𝑡 (34) 

𝑂𝑡 − 𝜌𝑅𝑡 ≤ 0 ∀𝑡 (35) 

𝑋𝑖𝑡 ≤ 𝑀(𝑦𝑖𝑡) ∀𝑖, 𝑡 (36) 

𝛼𝑍1 
≤ 

𝑈𝑍1 −∑
𝑁     ∑𝑇     (𝐶𝑖𝑡𝑋𝑖𝑡+𝑖𝑡𝐼

++𝜋𝑖𝑡𝐼
− +𝑆𝑖𝑡𝑌𝑖𝑡 ) 

𝑖=1    𝑡=1 𝑖𝑡 𝑖𝑡 
 

(𝑈𝑍1 −𝑔𝑍1 ) 

 (37) 

𝛼 ≤ 
𝑈𝑍2 −∑

𝑇     (𝑟𝑡𝑅𝑡+𝑜𝑣𝑡𝑂𝑡+𝑡𝐻𝑡+𝑓𝑡𝐹𝑡) 
𝑡=1 

 

𝑍2 (𝑈𝑍2 −𝑔𝑍2 ) 

 (38) 

𝑋𝑖𝑡 , 𝐼
+, 𝐼−, 𝜃1it, 𝜃2it, 𝜃3it ≥ 0 
𝑖𝑡    𝑖𝑡 ∀𝑖, 𝑡 (39) 

𝑅𝑡, 𝑂𝑡, 𝐻𝑡, 𝐹𝑡 ≥ 0 ∀𝑡 (40) 

𝛽𝑖𝑡 ∈ {0,1}  (41) 

𝐼𝑖𝑡: 𝐹𝑟𝑒𝑒 𝐼𝑛 𝑆𝑖𝑔𝑛 ∀𝑖, 𝑡 (42) 

 

 

The objectives of the fuzzy problem are simplified according to the membership function in 

relation (16) in the form of λ ≤ (𝑥) and added to the constraints of the deterministic model as 

constraints (23) and (24). The values of 𝑔𝑍1  
and 𝑔𝑍2  

will be obtained by solving the model 

presented in section 3-1 for optimizing equation (1) and (2) separately. To do so, the fuzzy 

numbers of demand will be assumed crisp by setting 𝑝𝑖𝑡 values to zero. The fuzzy constraint 

of the basic model should be converted through the relation (13) to the form of 𝜆 ≤ (𝑥) . To 

do this in constraint (25), whenever the third rule of the relation (13) is the matter of the case, 

it means 𝛽 = 0 and consequently the term 
(𝑑𝑖+𝑝𝑖)−(𝑋𝑖𝑡+ 𝐼𝑖𝑡−1− 𝐼𝑖𝑡) 

will be greater than or equal 
𝑝𝑖 
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to 𝜆 . By setting   to 1, the term  𝑖𝑡+ 𝐼𝑖𝑡−1− 𝐼𝑖𝑡−
(𝑑𝑖−𝑝𝑖) 

will be greater than or equal to 𝜆 as the 
𝑝𝑖 

same way. The right hand side of relation (26) gives a linear combination of 𝑑𝑖𝑡 − 𝑝𝑖𝑡 and 𝑑𝑖𝑡 
which is a general representative for values fallen between those extremes. Similarly this 

equation sets the term 𝑋𝑖𝑡 + 𝐼𝑖𝑡−1 − 𝐼𝑖𝑡 as a linear combination of 𝑑𝑖𝑡 and 𝑑𝑖𝑡 + 𝑝 . The 

condition to do so, is that at most two adjacent 𝜃k can be positive. According to constraints 

(27) – (29) when 𝛽 = 0 , 𝜃2 and 𝜃3 are active and equation (30) force their sum to be one. The 

same is returned for 𝛽 = 1 in which 𝜃1 and 𝜃2 are active their sum is forced to be one. Other 

added relations to the basic model are labeled (36) and (37) which respectively do the same of 

relations (23) and (24) considering the importance given by managers( 𝛼𝑍1
, 𝛼𝑍2 

)for the two 

objective functions. 

3.4. Adaptive model 

Now it is assumed that after 𝑟 periods the real data of demand occurred is available. Johnson 

and Montgomery (1978) called 𝑟 as the production lead time which is the number of periods 

between a decision to change the production rate and the time the change becomes effective.  

In other words the plan given by the model presented in section 3-3 is a preliminary one and it 

will be adjusted after 𝑟 periods. 

Hereafter, the solved variables for periods 𝑡 = 1,2, … , 𝑟 will be labeled as 𝑋∗𝑟𝑒𝑎𝑙
𝑖𝑡 , 𝐼∗𝑟𝑒𝑎𝑙𝑖𝑡 , 

𝑅∗𝑟𝑒𝑎𝑙
𝑡, 𝑂∗𝑟𝑒𝑎𝑙

𝑡, 𝐻∗𝑟𝑒𝑎𝑙
𝑡, 𝐹∗𝑟𝑒𝑎𝑙

𝑡 and real demands will be labeled  as 𝑑∗𝑟𝑒𝑎𝑙
𝑖𝑡. To revise  the 

bounds on objective functions ( 𝑈𝑍1
, 𝑈𝑍2 

, 𝐿𝑍1 
, 𝐿𝑍2 

) and the desired goals ( 𝑔𝑍1 
, 𝑔𝑍2 

), it is 

required to solve the revised model as follows. 
 

𝑚𝑖𝑛 𝑍1 = ∑𝑁 ∑𝑐 (𝐶𝑖𝑡 𝑋
∗𝑟𝑒𝑎𝑙

𝑖𝑡 + 𝑖𝑡 𝐼
+𝑟𝑒𝑎𝑙

𝑖𝑡  +  𝜋𝑖𝑡 𝐼
−𝑟𝑒𝑎𝑙

𝑖𝑡 +
 

𝑖=1 𝑡=1 
𝑆𝑖𝑡 𝑦

∗𝑟𝑒𝑎𝑙
𝑖𝑡 

) + ∑𝑁 ∑𝑇 (𝐶𝑖𝑡 𝑋𝑖𝑡 +  𝑖𝑡 𝐼
+ + 𝜋𝑖𝑡 𝐼

− + 𝑆𝑖𝑡 𝑦𝑖𝑡 ) 
𝑖=1 𝑡=𝑐+1 𝑖𝑡 𝑖𝑡 

(43) 

𝑚𝑖𝑛 𝑍2 = ∑𝑐 (𝑟𝑡 𝑅
∗𝑟𝑒𝑎𝑙

𝑡 +  𝑜𝑣𝑡𝑂
∗𝑟𝑒𝑎𝑙

𝑡 +  𝑡𝐻
∗𝑟𝑒𝑎𝑙

𝑡 +  𝑓𝑡 𝐹
∗𝑟𝑒𝑎𝑙

𝑡 ) + 
𝑡=1 

∑𝑇 (𝑟𝑡 𝑅𝑡 + 𝑜𝑣𝑡𝑂𝑡 + 𝑡𝐻𝑡 + 𝑓𝑡𝐹𝑡 ) 
𝑡=𝑐+1 

(44) 

Subject to:   

𝑋𝑖𝑡 + 𝐼𝑖𝑡−1 − 𝐼𝑖𝑡  =  𝑑′𝑖𝑡 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 2, … , 𝑇 (45) 

𝑋𝑖𝑡 + 𝐼∗𝑟𝑒𝑎𝑙𝑖𝑐 − 𝐼𝑖𝑡  = 𝑑′𝑖𝑡 ∀ 𝑖 ; 𝑡 = 𝑟 + 1 (46) 

𝐼𝑖𝑡 = 𝐼+ − 𝐼− 
𝑖𝑡 𝑖𝑡 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 2, … , 𝑇 (47) 

𝑅𝑡 − 𝑅𝑡−1 − 𝐻𝑡 + 𝐹𝑡 = 0 ∀ 𝑡 = 𝑟 + 2, … , 𝑇 (48) 

𝑅𝑡 − 𝑅∗𝑟𝑒𝑎𝑙𝑐 − 𝐻𝑡 +  𝐹𝑡  = 0 𝑡 = 𝑟 + 1 (49) 

∑(𝑐𝑝𝑖𝑋𝑖𝑡 + 𝑐𝑠𝑖𝑦𝑖𝑡) ≤ 𝑅𝑡 + 𝑂𝑡 ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (50) 

𝑂𝑡 − 𝜌𝑅𝑡 ≤ 0 ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (51) 

𝑋𝑖𝑡 ≤ 𝑀𝑦𝑖𝑡 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (52) 

𝑋𝑖𝑡, , 𝐼+, 𝐼−, 𝑅𝑡, 𝑂𝑡 , 𝐻𝑡, 𝐹𝑡 ≥ 0 
𝑖𝑡    𝑖𝑡 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (53) 

𝑅𝑡, 𝑂𝑡, 𝐻𝑡, 𝐹𝑡 ≥ 0 ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (54) 

𝐼𝑖𝑡 ∶ 𝐹𝐼𝑆 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (55) 

𝑌𝑖𝑡 ∈ {0,1} ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (56) 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 30, Special Issue of Nov 2018)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

40 

 

1 

 
By  setting 𝑑′𝑖𝑡 = 𝑑𝑖𝑡 the  model  revised 𝑔𝑍 and 𝑔𝑍 to   𝑔𝑟𝑒𝑣𝑖𝑠𝑒𝑑 and 𝑔𝑟𝑒𝑣𝑖𝑠𝑒𝑑 through 

1 2 𝑍1 𝑍2 

optimizing  1 and 𝑍2 separately. By setting 𝑑′
𝑖𝑡 = 𝑑𝑖𝑡 + 𝑝𝑖𝑡 the model revised   and 𝑈𝑍  to 

2 
𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑 and   𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑 through optimizing  𝑍1 and 𝑍2 separately. Similarly, setting 𝑑′

𝑖𝑡 = 
𝑍1 𝑍2 

𝑑𝑖𝑡 − 𝑝𝑖𝑡 leads to to  𝑒𝑣𝑖𝑠𝑒𝑑 and   𝐿𝑟𝑒𝑣𝑖𝑠𝑒𝑑    . 
𝑍1 𝑍2 

Finally the adaptive and deterministic model is presented below. 
 

𝑀𝑎𝑥 𝜆  (57) 

Subject to: 
  

𝜆 ≤ 
𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑−∑𝑁      ∑𝑟      (𝐶𝑖𝑡𝑋

∗𝑟𝑒𝑎𝑙
𝑖𝑡 + 𝑖𝑡𝐼

+𝑟𝑒𝑎𝑙
𝑖𝑡 + 𝜋𝑖𝑡𝐼

−𝑟𝑒𝑎𝑙
𝑖𝑡 + 𝑆𝑖𝑡 𝑦

∗𝑟𝑒𝑎𝑙    )−∑𝑁     ∑𝑇 (𝐶𝑖𝑡𝑋𝑖𝑡+ 𝑖𝑡𝐼
++ 𝜋𝑖𝑡𝐼

−+ 𝑆𝑖𝑡 𝑦𝑖𝑡) 
𝑍1 𝑖=1    𝑡=1 𝑖𝑡 𝑖=1     𝑡=𝑟+1 𝑖𝑡 𝑖𝑡 

(𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑−𝑔𝑟𝑒𝑣𝑖𝑠𝑒𝑑) 
𝑍1 𝑍1 

  (58) 

𝜆 ≤ 
𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑−∑𝑟     (𝑟𝑡𝑅

∗𝑟𝑒𝑎𝑙
𝑡+ 𝑜𝑣𝑡𝑂

∗𝑟𝑒𝑎𝑙
𝑡+ 𝑡𝐻

∗𝑟𝑒𝑎𝑙
𝑡+ 𝑓𝑡𝐹

∗𝑟𝑒𝑎𝑙
𝑡)−∑

𝑇 (𝑟𝑡𝑅𝑡+ 𝑜𝑣𝑡𝑂𝑡+ 𝑡𝐻𝑡+ 𝑓𝑡𝐹𝑡) 
𝑍2 𝑡=1 𝑡=𝑟+1 

 

(𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑−𝑔𝑟𝑒𝑣𝑖𝑠𝑒𝑑) 
𝑍2 𝑍2 

  (59) 

𝜆𝑝𝑖𝑡 ≤ 𝛽
𝑖𝑡
(𝑋𝑖𝑡 + 𝐼𝑖𝑡−1 − 𝐼𝑖𝑡) − (𝑑𝑖𝑡 − 

𝑝𝑖𝑡)) + (1 − 𝛽
𝑖𝑡
)((𝑑𝑖𝑡 + 𝑝𝑖𝑡) − (𝑋𝑖𝑡 + 

𝐼𝑖𝑡−1 − 𝐼𝑖𝑡 )) 

∀𝑖 = 1,2, … , 𝑁 ∀𝑡 = 𝑟 + 2, … , 𝑇 (60) 

𝜆𝑝𝑖𝑡 ≤ 𝛽
𝑖𝑡
(𝑋𝑖𝑡 +  𝐼∗𝑟𝑒𝑎𝑙𝑖𝑐 −  𝐼𝑖𝑡 ) − (𝑑𝑖𝑡 − 

𝑝𝑖𝑡)) + (1 − 𝛽
𝑖𝑡
)((𝑑𝑖𝑡 + 𝑝𝑖𝑡) − (𝑋𝑖𝑡 + 

𝐼∗𝑟𝑒𝑎𝑙𝑖𝑐 − 𝐼𝑖𝑡 )) 

∀ 𝑖 ; 𝑡 = 𝑟 + 1 (61) 

𝑋𝑖𝑡 + 𝐼𝑖𝑡−1 − 𝐼𝑖𝑡 = 𝜃1it(𝑑𝑖𝑡 − 𝑝𝑖𝑡 ) + 
𝜃2it𝑑𝑖𝑡 + 𝜃3it(𝑑𝑖𝑡 + 𝑝𝑖𝑡 ) 

∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 2, … , 𝑇 (62) 

𝑋𝑖𝑡 + 𝐼∗𝑟𝑒𝑎𝑙𝑖𝑐 −  𝐼𝑖𝑡 = 𝜃1it(𝑑𝑖𝑡 − 𝑝𝑖𝑡 ) + 
𝜃2𝑑𝑖𝑡 + 𝜃3(𝑑𝑖𝑡 + 𝑝𝑖𝑡) 

∀𝑖 ; 𝑡 = 𝑟 + 1 (63) 

𝜃1it ≤ 𝛽
𝑖𝑡

 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (64) 

𝜃2it ≤ 1 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (65) 

𝜃3it ≤ 1 − 𝛽
𝑖𝑡

 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (66) 

𝜃1it + 𝜃2it + 𝜃3it = 1 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (67) 

𝐼𝑖𝑡 = 𝐼+ − 𝐼− 
𝑖𝑡 𝑖𝑡 ∀𝑖, ∀𝑡 = 𝑟 + 1, … , 𝑇 (68) 

𝑅𝑡 − 𝑅𝑡−1 − 𝐻𝑡 + 𝐹𝑡 = 0 ∀𝑡 = 𝑟 + 2, … , 𝑇 (69) 

𝑅𝑡 − 𝑅∗𝑟𝑒𝑎𝑙𝑐 − 𝐻𝑡 +  𝐹𝑡  = 0 𝑡 = 𝑟 + 1 (70) 

∑(𝑐𝑝𝑖𝑋𝑖𝑡 + 𝑐𝑠𝑖𝑦𝑖𝑡) ≤ 𝑅𝑡 + 𝑂𝑡 ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (71) 

𝑂𝑡 − 𝜌𝑅𝑡 ≤ 0 ∀𝑡 = 𝑟 + 1, … , 𝑇 (72) 

𝑋𝑖𝑡 ≤ 𝑀(𝑦𝑖𝑡) ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (73) 

𝛼𝑍1 
≤ 

𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑−∑𝑁      ∑𝑟      (𝐶𝑖𝑡𝑋
∗𝑟𝑒𝑎𝑙

𝑖𝑡 + 𝑖𝑡𝐼
+𝑟𝑒𝑎𝑙

𝑖𝑡 + 𝜋𝑖𝑡𝐼
−𝑟𝑒𝑎𝑙

𝑖𝑡 + 𝑆𝑖𝑡 𝑦
∗𝑟𝑒𝑎𝑙    )−∑𝑁     ∑𝑇 (𝐶𝑖𝑡𝑋𝑖𝑡+ 𝑖𝑡𝐼

++ 𝜋𝑖𝑡𝐼
−+ 𝑆𝑖𝑡 𝑦𝑖𝑡) 

𝑍1 𝑖=1    𝑡=1 𝑖𝑡 𝑖=1     𝑡=𝑟+1 𝑖𝑡 𝑖𝑡 

(𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑−𝑔𝑟𝑒𝑣𝑖𝑠𝑒𝑑) 
𝑍1 𝑍1 

  (74) 
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𝛼 ≤ 
𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑−∑𝑟     (𝑟𝑡𝑅

∗𝑟𝑒𝑎𝑙
𝑡+ 𝑜𝑣𝑡𝑂

∗𝑟𝑒𝑎𝑙
𝑡 + 𝑡𝐻

∗𝑟𝑒𝑎𝑙
𝑡+ 𝑓𝑡𝐹

∗𝑟𝑒𝑎𝑙
𝑡)−∑

𝑇 (𝑟𝑡𝑅𝑡+ 𝑜𝑣𝑡𝑂𝑡+ 𝑡𝐻𝑡+ 𝑓𝑡𝐹𝑡) 
𝑍2 𝑡=1 𝑡=𝑟+1 

𝑍2 (𝑈𝑟𝑒𝑣𝑖𝑠𝑒𝑑−𝑔𝑟𝑒𝑣𝑖𝑠𝑒𝑑) 
𝑍2 𝑍2 

  (75) 

𝑋𝑖𝑡 , 𝐼
+, 𝐼−, 𝜃1it, 𝜃2it, 𝜃3it ≥ 0 
𝑖𝑡    𝑖𝑡 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (76) 

𝑅𝑡, 𝑂𝑡, 𝐻𝑡, 𝐹𝑡 ≥ 0 ∀𝑡 = 𝑟 + 1, … , 𝑇 (77) 

𝛽𝑖𝑡 ∈ {0,1}  (78) 

𝐼𝑖𝑡: 𝐹𝑟𝑒𝑒 𝐼𝑛 𝑆𝑖𝑔𝑛 ∀ 𝑖 ; ∀ 𝑡 = 𝑟 + 1, … , 𝑇 (79) 

 

4. Numerical example and analysis 

To come up with possible situations, the case with two scenarios is discussed, taking in to 

account bellow assumptions and rules: 

Assumption 1: It is assumed that the sales function tries his best to absorb orders 

from the market and to realize the sales plan. 

Assumption 2: It is assumed that the sales and operations planners hand over the 

plan to each other in advance to achieve a realistic one considering the 

appropriateness for market and resources. 

Assumption 3: At the aggregate sales and operations planning level, getting 

operations function a plan which misses coverable forecasted demands is contrary 

to the fundamental principle of full utilization of existing capacities of operations  

facilities. It is assumed that any decision to adjust system to a load under its normal 

capacity level means “plan to fail” and shrinks the effectiveness. Except the case in 

which permitting lost sales gives much better gains, for other cases this assumption 

will be valid. 

Rule of changing SOP: Based on the above assumptions, if the revised values of 

expectations and bounds are not acceptable for the managers, the sales plan shall be 

revised and accordingly the operations plan shall be changed too. Otherwise, just 

the operations plan should be revised to achieve updated expectations and bounds. 

Rule of acceptance: The absolute of difference between initial and revised values 

of expectations and bounds should be considered. Because the sign of difference is 

misleading and the absolute value can indicate to the fact that the existing plan  

becomes unrealistic. Hence, all reductions in revised values are not acceptable. 

 

In all discussions, we are talking in behalf of operations function, so we argue the cases in 

which changing operations plan is required based on “rule of changing SOP”. 

Scenario 1: 

If the real demands during periods 𝑡 = 1,2, … , 𝑟 are less than forecasted ones, the sales plan 

will not be changed unless the revised values of expectations and bounds are not acceptable for 

the managers. Changing operations plan may lead to using overtime and sub-contracting to 

fulfil revised expectations and bounds. 
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In the case that the revised expectations and bounds are improved, the initial arrangement of 

resources (which is mathematically optimal) are might infeasible. 

Scenario 2: 

If the real demands during periods 𝑡 = 1,2, … , 𝑟 are greater than forecasted ones, the sales plan 

will not be changed unless the revised values of expectations and bounds are not acceptable for 

the managers. Changing operations plan leads to using overtime and sub-contracting to fulfil 

revised expectations and bounds. 

The lag in occurring demands leads to load of more work in operations system and 

consequently the initial arrangement of resources (which is mathematically optimal) is not  

feasible. So using overhead and subcontracting are necessitated and shall be used to cover the 

overall plan. 

In this section a randomly generated problem is considered in which the decisions of sales and 

operations planning are to be made for 3 products in a planning horizon of 12 months. The  

initial man-hour is assumed 800, and the rate of allowed work in overtime is 25 percent. 9 man- 

hours of ordinary work for producing each of products and 3 man-hours of ordinary work for 

setup per each output of the production system are assumed. The other required data is  

presented in Table 3. 

Table 3. The given data for a sample problem 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 

 

 
𝑑𝑖𝑡 

250 550 1150 2350 1000 700 800 900 1000 1500 1700 500 

400 660 400 350 200 800 1000 1200 700 600 500 300 

1000 800 720 630 480 300 210 700 800 900 1010 1500 

 

𝑜𝑣𝑡 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 

 

𝑖𝑡 375 375 375 375 375 375 375 375 375 375 375 375 

 

𝑓𝑖𝑡 599 599 599 599 599 599 599 599 599 599 599 599 

 

 

𝐶𝑖𝑡 

169 195 198 153 179 154 186 196 177 180 189 169 

208 229 218 249 258 259 228 233 206 230 251 249 

45 92 88 45 90 45 49 74 77 84 50 63 

 

 

𝑖𝑡 

149.3 70.31 174.0 89.56 175.0 125.3 65.81 177.0 94.87 126.3 143.0 96.45 

81.54 136.6 184.1 28.48 89.03 82.39 74.08 28.17 197.2 155.3 245.5 178.2 

28.50 3.085 82.82 33.51 0.723 40.48 44.24 7.550 76.58 39.38 12.61 39.65 

 

 
𝜋𝑖𝑡 

51 58 58 61 70 61 67 60 61 52 64 70 

46 41 48 60 55 56 67 53 44 42 55 64 

93 100 85 85 99 96 100 87 95 96 86 95 

 

 

𝑆𝑖𝑡 

1032 1105 1171 1089 1077 1178 1081 1128 1145 1076 1055 1139 

697 557 510 527 681 696 573 585 555 557 602 510 

443 301 333 422 366 466 481 419 378 381 305 350 

 

 

𝑝𝑖𝑡 

60 59 59 55 51 66 61 63 52 52 70 50 

134 109 138 137 118 101 138 105 108 116 108 112 

136 124 135 125 145 131 159 159 159 136 133 129 

P
aram

eters 
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For determining the level of fuzzy expectation of objective functions, the Relations (1)-(12) 

are solved separately for optimizing equation (1) and (2).  The values of 𝐷   in equation (3) are 
set as crisp numbers which are shown as 𝑑𝑖𝑡 in Table 3. Similarly, the upper and lower limits 

of objective functions have been calculated by setting the values of 𝐷   according to Relations 
(19) and (20). The values of 𝑝𝑖𝑡 are shown in the last rows in Table 3. Achievement level of 

objectives are calculated by relation (21) after gathering the decision makers’ linguistic values 

for the importance of objectives which are transformed through the fuzzy numbers in Table 2. 

The results are summarized in Table 4. All optimization efforts have been done in Lingo 17 on 

a 64-Bit system with 3.60 GHZ processor and 4.00 GB RAM. 

Table 4. expectations/bounds/achievement level of objective functions 

The level of fuzzy expectations The bounds of objectives Achievement level of objectives 

gZ1 gZ2 UZ1 UZ2 αZ1 αZ2 

4424080 8607833 4976495 9785388 0.650 0.525 

 
Applying the new calculated data in Table 4, the crisp counterpart of our studied fuzzy model 

can be solved through entering Relations (23)-(42) in the Lingo 17 environment. Its global 

solver was enabled and found the global optimum for these relations in about 3 hours of  

computations. According to this, the level of satisfying constraints and objectives is 60% ( = 

0.604). Table 5 summarizes the output for variables listed in section 3.1.3. 

 

Table 5. Optimal values of decision variables in Non-Adaptive Crisp Model for the sample problem 

 
1 2 3 4 5 6 7 8 9 10 11 12 

 

 
 
𝑥𝑖𝑡 

213.36 
75 

539.52 
43 

724.47 
66 

1898.9 
72 

1591.7 
79 

985.96 
04 

824.14 
79 

924.93 
96 

1020.5 
85 

1479.4 
15 

1672.2 
89 

480.20 
66 

228.86 
01 

1080.3 
14 

0 0 
449.05 

39 
839.98 

26 
1054.6 

3 
1158.4 

34 
687.98 

3 
554.07 

94 
0 0 

946.16 
21 

849.08 
75 

773.44 
21 

679.48 
34 

537.40 
07 

752.29 
02 

699.45 
56 

494.85 
96 

869.66 
51 

544.73 
89 

906.16 
61 

2098.2 
49 

 

𝑅𝑡 
10001. 

21 
10001. 

21 
18568. 

08 
18568. 

08 
18568. 

08 
18568. 

08 
18568. 

08 
18568. 

08 
18568. 

08 
18568. 

08 
18568. 

08 
18568. 

08 

 

𝑂𝑡 
2500.3 

01 
2500.3 

01 
4642.0 

2 
4642.0 

2 
4642.0 

2 
4642.0 

2 
4642.0 

2 
4642.0 

2 
4642.0 

2 
4642.0 

2 
4642.0 

2 
4642.0 

2 

 

𝐻𝑡 
9201.2 

05 
 

0 
8566.8 

73 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 

 
𝐹𝑡 0 0 0 0 0 0 0 0 0 0 0 0 

 

 
𝐼+ 
𝑖𝑡 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

 

0 
 

0 
 

0 
 

0 
 

0 
400.43 

16 
826.94 

43 
558.86 

11 
565.58 

33 
156.48 

42 
 

0 
547.18 

19 

 

 
𝐼− 
𝑖𝑡 

12.880 
51 

 

0 
402.16 

72 
831.42 

25 
259.83 

32 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 

118.09 
37 

734.94 
41 

 

0 
295.76 

62 
 

0 
 

0 
 

0 
 

0 
 

0 
 

0 
457.24 

63 
712.90 

92 

0 0 0 0 0 0 0 0 0 0 0 0 
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According to section 3-4 it is assumed that after 2 periods (𝑟 = 2), the plan can be updated. 

The real data from sales department for these two last periods (𝑑∗𝑟𝑒𝑎𝑙
𝑖𝑡) are as follows: 

Table 6. Updated data of demand for two periods 
 

 Product 1 Product 2 Product 3 

Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 

Real Demand Occurred 110 80 140 170 1160 720 

Forecasted Demand 
(190,250,3 

10) 
(491,550,60 

9) 
(266,400,53 

4) 
(551,660,76 

9) 
(864,1000,101 

36) 
(676,800,92 

4) 

Deviation from the most 
likely forecasts 

-56.00% -85.45% -65.00% -74.24% 16.00% -10.00% 

 

From Table 6, it is clear that the “scenario 1” is brought up. Replacing the real demand data 

and the solved values for decision variable for periods 1, 2 which are shaded in Table 5, first 

the expectations and bounds of objective functions should be revised through Relations (43) - 

(56). The results are obtained by Lingo 17 branch and bound solver as shown in Table 7. 

Table 7. expectations/bounds/achievement level of objective functions 
 

 The level of fuzzy expectations The bounds of objectives 

gZ1 gZ2 UZ1 UZ2 

Initial values 4424080 8607833 4976495 9785388 

Revised values 4180498 5008142 4605327 5008142 

Deviation from initial plan -5.51% -41.82% -7.46% -48.82% 

 

As it is shown by the last row in Table 7 the sign of deviations is negative. This means that  

deviation from the most likely forecasts led to the situation in which the better level of fuzzy 

expectations and bounds of objective functions should be pursued. So, after updating data, the 

initial values give a misleading perspective of the potential expectations and upper bounds. In 

this example, the operations function used its resources to produce the quantities which have 

not been sold at the end of the second period. Thus, inventories will be helpful to cover the rest 

of periods if the sales plan (for periods 3 to 12) remains unchanged. This has reduced the level 

of costs comparing to the initial ones. It is assumed that these deviations are accepted by 

managers.so in line with “Rule of changing SOP” the operations plan shall be updated. Also 

regarding Assumption 3, no lost sales throughout the planning horizon is permitted. 

Replacing updated data which are bolded in Table 5 and from Table 6 and Table 7 with initial 

data of the sample problem and run the relations (57)-(79) in Lingo 17 environments leads to 

infeasibility. Examining the situation in Lingo 17 environment shows that the infeasibility has 

been caused by constraint (74). In fact production and inventory costs reached their revised 

upper bound and consequently the importance forced by managers for these costs couldn’t be  

satisfied. It is predominantly due to transferred inventories from periods 1 and 2 which are 

caused by the lower level of real demand comparing to that of forecasted demand in initial  

SOP. So, as indicated in “scenario 1” the higher level of overtime and/or using sub-contracting 

could be useful. Using sub-contractors’ capacities frees up the storages from pushed inventories 

which have been produced in ordinary or overtime hours for overcoming future demand peaks. 

Table 8 summarizes the result of various strategies might be considered by managers to be 

implemented. 
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Table 8. 𝝀 values obtained by different strategies 

sub-contracting 

 

lost 

sales 

 

For strategies which employs sub-contracting some modifications in the relations (57)-(79) 

have been done. The level of production in each period by sub-contracting and the related cost 

have been added to the model. The best value of 𝝀 is obtained by strategy S1 (permitted lost 

sales/ employed sub-contracting) assuming 25 percent increase comparing to ordinary costs for 

sub-contractor production. For 150 percent increase, strategy S1 obtained 0.56 which is close 

to the initial value of 0.604 . Strategy S3 (permitted lost sales/ not employed sub-contracting) 

obtained 0.53 which is almost equal to employing rather expensive sub-contractor. Lingo 17 

performed computations of strategy S2 for about 10 hours and concluded non encouraging 

results far from the initial value of 0.604. So, strategy S1 is recommended to the decision 

makers. Table 9 summarizes the output of strategy S1 for variables listed in section 3.1.3. The 

required production prepared by sub-contracting is 576.0555 of product 3 in period 4. 

Table 9. summary of strategy S1 

 
1 2 3 4 5 6 7 8 9 10 11 12 

 

 

 
𝑥𝑖𝑡 

213.36 
75 

539.52 
43 

795.25 
3 

2532.3 
82 

1101.1 
58 

671.51 
73 

773.67 
51 

872.81 
2 

977.55 
91 

1184.4 
64 

0 0 

228.86 
01 

1080.3 
14 

1075.3 
89 

0 
439.95 

32 
756.41 

28 
940.44 

53 
1154.6 

87 
0 0 0 0 

946.16 
21 

849.08 
75 

661.73 
99 

0 
417.42 

44 
243.46 

62 
267.88 

14 
504.88 

37 
731.38 

26 
841.30 

84 
2025.7 

73 
371.15 

98 

 

𝑅𝑡 
10001. 

21 
10001. 

21 
18237. 

95 
18237. 

95 
18237. 

95 
18237. 

95 
18237. 

95 
18237. 

95 
18237. 

95 
18237. 

95 
18237. 

95 
18237. 

95 

 

𝑂𝑡 
2500.3 

01 
2500.3 

01 
4559.4 

88 
4559.4 

88 
0 0 0 

4559.4 
88 

0 0 0 0 

 

𝐻𝑡 0 0 
8236.7 

43 
0 0 0 0 0 0 0 0 0 

 

𝐹𝑡 0 0 0 0 0 0 0 0 0 0 0 0 

 

 
𝐼+ 
𝑖𝑡 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 
126.49 

89 
0 0 0 

1073.1 
69 

0 

 

 

𝐼− 
𝑖𝑡 

12.880 
51 

0 
329.28 

52 
123.16 

73 
0 0 0 0 0 

293.09 
49 

1962.8 
86 

2441.3 
08 

118.09 
37 

734.94 
41 

0 
290.87 

68 
0 0 0 0 

653.39 
19 

1203.3 
31 

1656.7 
23 

1908.3 
89 

0 0 0 0 0 0 0 0 0 0 0 0 

 

 
To have a better understanding of the case, for S1 strategy the computations are done for three 

rates of overtime(0.20%, 25% and 30%) and ten cost rates of contracting(from 125% to 325% 

employed not employed 

permitted 0.56-0.67(S1) 0.53(S3) 

not permitted 0.04-0.09(S2) infeasible(S4) 
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8.98% 8.97% 

7.84% 8.01% 

6.07% 
5.41% 

4.74% 

3.65% 

2.36% 

1.50% 

125% 150% 175% 200% 225% 250% 275% 300% 325% 1000% 

0.00% 

20% 25% 30% 
-0.50% 
 

-1.00% 
 

-1.50% 
 

-2.00% 
-2.19% 

-2.50% 
 

-3.00% -2.88% 

-3.50% 
-3.68% 

-4.00% 

 

by 25% steps and 1000%). It is interesting to know about the effect of a change in overtime 

rate (namely, a 5% increase) in any level of contracting cost. As shown in Fig. 2, the effect has 

a cyclic behavior. However, the least effect of any 5% increase of using normal capacity as 

overtime, is seen where the contract cost is 25% greater than that of using normal capacities.  

In addition, the greatest effect is observed in 300% and 325% levels of contract cost (slightly  

more than that of 1000%). 

Figure 2. the effect of a change in overtime rate in any level of contracting cost 

 

 
Similar analysis would be sought for the effect of any 25% increase in contract cost in any level 

of allowed percentage of overtime. It is concluded that the effect of each 25% increase in 

contract cost would be greater where the system uses the lesser percentage of normal capacity 

as overtime. Fig. 3 presents the observations summarized on average. 

Figure 3. the effect of increase in contract cost in any level of allowed percentage of overtime 

 

The further insight would be clustering of the various combination of overtime and contract  

levels which serves as a mechanism for a manager to make an executable optimum decision 

and to screen the alternatives. Each of these 30 alternatives is a combination of two percentages. 

The pair of (Ov. %, Cont. %) is representative for alternatives. As shown in Table 10, the 

observed range of Landa for 30 experiments is divided to 5 partitions each forms a cluster of  

homogenous combinations in term of Landa. For instance, the pairs (20%, 125%), (25%, 

125%) and (30%, 125%) are homogenous and a manager would choose the lower level of 

overtime while obtaining the similar result is guaranteed for him. 
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Table 10. Clustering alternatives in strategy S1 

Cluster 
Pair Range of 

Landa Ov. % Cont. % 

 
Cluster #1 

20% 125%  
0.65-0.69 25% 125% , 150% 

30% 125% , 150% , 175% 

 

 
Cluster #2 

20% 150%  
0.60-0.64 25% 175% , 200% 

30% 200% , 225% 

 

 
Cluster #3 

20% 175% , 200%  
0.55-0.59 25% 225% , 250% , 275% 

30% 250% , 275% , 300%, 325% , 1000% 

 

 
Cluster #4 

20% 225% , 250% , 275%  
0.50-0.54 25% 300% , 325% , 1000% 

30% ----- 

 

 
Cluster #5 

20% 300% , 1000%  
0.45-0.49 25% ----- 

30% ----- 

 
 

About 67 percent of Experiments of S1 strategy are infeasible. Table 11 shows the details of  

results for solving the feasible pairs. As is shown, the best alternative is (30%, 125%) but 

because of the pressure of inventory and capacity costs during the planning horizon which is  

forced by the required 100% service level at the end of the planning, the obtained value is just 

about 0.1. 

Table 11. Feasible alternatives in strategy S2 

 
 

Exp. No. 

 

Allowed 

percentage 

of overtime 

Inflation 

percentage 

for 

contractor 
costs 

 

Value of 

objective 

function 

 
Local/ 

Global 

 
Computation 

time(Seconds) 

1 20% 125% 0.072 Global 6410.53 

2 20% 150% 0.016 Global 8.75 

1 25% 125% 0.087 Global 11196.98 

2 25% 150% 0.04 Global 15.15 

3 25% 175% 0.006 Global 12.07 

1 30% 125% 0.1 Global 16333.02 

2 30% 150% 0.067 Global 3889.42 

3 30% 175% 0.04 Global 64.99 

4 30% 200% 0.01 Global 29.84 
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5. Conclusion and future research 

The dynamic character of aggregate production plans and the need for some degree of operational 

flexibility were highlighted in this study. Additionally, when creating models, demand fuzziness 

was taken into account. During a planning horizon, decisions regarding production, inventories, 

and manpower levels were thought to be optimised. To address the flexibility of the design, the 

fuzzy LP methodology was chosen coupled with a multi-stage analytical method. Three 

presumptions, two rules, and two potential scenarios that could occur throughout the updating 

process were used. When a sample problem was discussed using the analysis approach, it became 

clear that new strategies needed to be devised because the updated operations plan might go 

against expectations and the significance of goal functions. The viability of the adapted plan 

was determined by analysing three different methods, which also demonstrated how to 

design adaptive strategies to achieve an objective value that is more similar to the original 

one. The primary conclusion drawn from the assumptions and guidelines offered is that it is 

necessary to update the aggregate plans and that it is preferable to develop initial plans 

without subcontracting and assess the necessary amount of subcontracting throughout the 

adaption process. The lengths of the "golden time" to change the plan (r) can be examined in 

various situations for next studies. Additionally, flexibility is a highly important topic in 

multi-stage production systems. Additionally, the importance of adaptive aggregate plans in 

production-distribution systems that have variable retailor sales performance cannot be 

overstated. 
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