A Cold Forging Review

Jitendra Padhi	Assistant Professor, Nalanda Institute of Technology, Bhubaneswar
Prayag Prajapati	Assistant Professor, Nalanda Institute of Technology, Bhubaneswar
ABSTRACT	

Cold forging is a process in which the shape of metal is changed, by mechanical forces only, using the ductile properties of metal such as pressing, squeezing, or hammering forces. In forging, a metal work piece is plastically deformed, at ambient temperatures. The modular system to control material flow during cold forging processes by additional hydraulic axes using different process variables as well as the appropriate process and equipment technology is presented in this contribution. It has been shown that due to the controlled movements of the tool components both the robustness of the forming processes and tool loads in conventional cold forging process are controllable leading to enhancement of forming limits. Tip test and T-shape compression test are used to determined friction measurement in cold forging which are used to analyze property of materials.

KEYWORDS : Cold forging; pressing; squeezing; metal work; hammering; ambient temperature; tip test; T-shapecompression test.

1 INTRODUCTION

Cold forging is a procedure in which only mechanical forces are used to alter the shape of metal. In forging, pressing, squeezing, or hammering forces are used to plastically deform a metal work piece. The material must have enough flow and ductile characteristics to facilitate forging. Net-shape or almost net-shape components, such as shafts, axles, bolts, gears, and joints, can be produced at a reasonable cost through forging. Almost all metals are forgeable. As a result, goods with the highest structural integrity are now accessible in a wide variety of physical and mechanical properties. In high dependability applications, where tension, stress, load, and worker safety are crucial factors, forgings are used. Also, they work in a variety of difficult conditions, such as extremely caustic, high temperatures, and high pressures.

The system's potential to increase process resilience and tensile stresses in the cup wall has been explored using the traditional backward cup extrusion method with a controllable counterpunch (Fig. 1). The bottom height of the press cup, which must be maintained within extremely tight dimensional tolerances while process input variables are changing, is selected as the objective for the robustness study. This experiment explores the general potential for automating cold forging procedures. Thin tabular semi-finished parts with acceptable mechanical qualities or made of high strength steel suitable for lightweight applications should be cost-effectively manufactured using a regulated counterpunch. [1].

Fig. 1. Sketch of backward cup extrusion with controllable counterpunch

The tip was created using a backward extrusion technique with a cylindrical specimen whose diameter was lower than the cylindrical die's diameter and greater than the punch's diameter. As a result, the bottom die's side wall was hit by the bulged surface, which caused the initial deformation mode to be upsetting before switching to backward extrusion later. In the normal and shrunken tip tests shown in this figure, the original specimen's diameter and height were 30x15 and 10x5 mm2, respectively.

Because to a lack of upset-ting mode in the beginning, the tip cannot be created using a specimen with the same diameter as the bottom die. To further understand how the surface roughness of the bottom die acting as the counter punch affected the friction behaviour and material flow in the tip test utilising AL6061-O and 2024-O specimens, the surface roughness was changed from Ra = 0.61 m to Ra = 0.08 m. In the studies, four different lubricants were employed, including grease, frying maize oil, VG32, and VG100. [4]

Forward extrusion can be used to assess friction in cold forging as a practical industry procedure. because after the die zone has been filled with metal, the friction force generated along the surface of the container decreases with the length of the billet. The slope of the decreasing stroke-load curve of extrusion can then be used to calculate friction factor m, also known as friction coefficient. Forward extrusion process is T-shape compression test. Forward extrusion can be used to assess friction in cold forging as a practical industry procedure. because after the die zone has been filled with metal, the friction force generated along the surface of the container decreases with the length of the billet. The slope of the decreasing stroke-load curve of extrusion can then be used to calculate friction factor m, also known as friction coefficient. Forward extrusion process is T-shape compression test.

HISTORY

Forging is one of the oldest known metalworking processes. Traditionally, forging was performed by a smith using hammer and anvil.[6] The cold forging process was developed in Germany just before the end of World War II. It was used to produce artillery shells and other ordinance items for the war. After the war, a number of firms in the United States picked up the idea. At first, most of the work here was concentrated on shell manufacture, but it didn't take long for the firms to realize the possibilities of cutting costs in the manufacturing of consumer goods.[5]

By the early fifties, the process had attracted attention from car and truck manufacturers and was being used to produce automotive parts such as brake light receptacles and spark plug bodies. It was a process that could be economically applied to almost any symmetrical part made in large quantities. More than 500,000 tons of steel parts were manufactured by cold extrusion in 1969. By comparison, in 1950 the total was about one tenth of that. [5]

Due to the energy crisis in the 1970's, researchers worked intensely to improve material usage, reduce forging energy, and eliminate machining processes with high precision forging. Since problems such as environment pollution and noise level have become more prevalent, engineers have been researching hydraulics to find the optimum process to take the billet to the final product. Technology has focused on closed die forging and steels designed for cold forming. Closed-die forging technology improves the yield of ma-

machine.[2]

terial usage with the optimal process having no flash and reducing the need for highly skilled workers. Closed-die forging has become a key technology for precision forging of products such as constant velocity joints and bevel gears.[5]

2 EXPERIMENTAL STUDY

TIP TEST FOR MEASUREMENT OF FRICTION

Downsized tip test was performed with an experimental setup by employing the punch, lower die, and counter punch working as bottom die as shown in Fig 2. To apply the force to the workpiece, MTS machine was used with a maximum load of 100 kN. The forming stroke applied was 3.2 mm and 3.5 mm for AL2024-O and AL6061-O, respectively and constant ram speed of 0.1mm/s was applied during the test.[4]

Counter Punch (my)

Fig. 2. Schematic of the tip test

To prepare the specimen, commercial AL2024 and AL6061 billets were turned to be a cylindrical bar of 12 mm of diameter and 150 mm in height. After turning, they were heated from room temperature to 415° C and kept at this temperature for three hours. Then, the specimens were cooled at a heat extracting rate of 30°C/hr to 260°C, and finally exposed to air-cooling until reaching room temperature. In order to guarantee uniformity of the test results, enough number of bars was annealed at the same time to avoid material property variation depending on annealing. They were cut off to make a tip test specimen of 10 mm of diameter and 5 mm of height after heat treatment. The dimension of the specimen was measured with vernier callipers to reduce the influence of size difference of the specimen on measurement results of the tip test.[4]

The deformed specimen can be used for measuring the tip distance d as shown in Fig.2 with an optical microscope which has a special feature of extended focal imaging function to integrate pictures of different focuses. The deformed tip distance was measured at four different points because of measured scattering data.[4]

Another important issue for controlling the lubrication is the quality of surface cleanliness. Before applying four kinds of lubricants such as grease, cooking corn oil, VG32, and VG100, the following surface cleaning process was used. At first, the surface of the punch and dies was cleaned by a wiper soaked with acetone to avoid adulteration among the lubricants. Acetone is a solvent for lubricants, hence if there is a residue of acetone on the surface of the punch and dies, it can unexpectedly affect lubrication performance. To remove this residual acetone after surface cleaning, forced air blow was applied on their surfaces by employing a hair dryer. After cleaning, the lubricants were brushed manually.[4]

the environmental factors affect the measured data, the same experimental condition of surface conditions of the specimen and dies, lubricant, temperature, humidity, and deformation speed was maintained during the test. Six experiments were carried out for each lubricant. The maximum stroke was limited up to 3.5 mm in each experiment because of capacity of the testing

In the tip test, centering should be carefully monitored to achieve axi-symmetric deformation. However, it was not easy to perfectly maintain axi-symmetry in experiments. When the specimen, including cutting, lathing and polishing, etc., was not carefully prepared, the edge might be damaged. In this case, the tip was not sharp enough to get precise measurement. To over- come these difficulties of axi-symmetry and measurement, tip distances were measured at four different locations for each sample and were arithmetically averaged.[2]

T-SHAPE COMPRESSION TEST FOR MEASUREMENT OFFRICTION

T-shape compression includes three parts: punch, cylindrical specimen and die with a V-groove, as shown in Fig.3. The sec- tional shape of a formed part is 'T-shaped', hence the test is named T-shape compression. In this test, the specimen is first located in the groove as shown in Fig.3(a). During deformation by the top punch, some metal is extruded into the groove and some is upset and moves sideways between the flat surfaces (see Fig.3(b)). The friction force, generated along the wall of groove, restricts metal flow into it, so the height of the extruded part changes with different friction conditions. In addition, this test is well to evaluate the ability of the lubricant. For solid lubri- cation condition, the cylindrical surface of the specimen was coated with zinc phosphate and soap layer, contact with die and punch directly. For the oil lubrication condition test, the V- groove is filled with the lubricant, so the billet surface is easily lubricated during the test.[3]

Fig.3. The principle of T-shape compression Effect of friction condition on load and formed part

shape

The whole deformation of specimen in T-shape compression in-cludes two stages-

• In the first stage, the metal is pushed into the die groove and no lateral expansion appears between the punch and flattop surface of die, due to small contact area between specimen and punch. Also it can be observed that the load changes almost lin- early with punch stroke when the ratio of punch stroke to billet diameter increases from 0.15 to 0.43 (see Fig.4).

• In the second stage, the contact region of specimen/punch be- comes larger, then the compression of metal occurs between the flat surfaces of the tools, so load will increase shapely.[3]

Fig.4. Load curves with different friction factors

Load curves with different friction factors are shown in Fig.4. Results illustrate that the load increases with friction factor and the sensitivity of load to friction factor becomes larger at a higher

punch stroke. This is because contact area and contact pressure between specimen and die become large with the punch moving down. Thus, the friction increases. Furthermore, in the first deformation stage, the slope of load curve $k = \tan \alpha$ (see Fig.4), changes with different friction factors. Hence, it is a convenient means for determination of the friction condition.[3]

AUTOMATICALLY CONTROLLED (COLD) FORGING PROCESS

Manufacturing Equipment for Automatic Control of Additional Tool Axes

A tool set developed at IFU enables the integration of one additional hydraulic tool axis with a maximum stroke of 100 mm and a maximum speed of 100 mm/s. The maximum force of the controllable hydraulic axis amount at 500 kN. The hydraulic power unit and the valve bloc were developed by FMB Blickle GmbH with a focus on resource efficiency and online oil condition monitoring. The connected load of 250 kW, the control pumps and servo valves enable the provision of an flow rate of 460 l/min at a maximum pressure of 280 bar suitable for many cold forging processes. The control and the paramaterization of the tool kinematics were developed by press Control Electro-technic and are equipped with a user friendly interface. It provide the communication between the hydraulic unit, servo valves , hydraulic axes and the measured variables during cold forging and the automatic control of hydraulic tool axes and the forming process respectively.[1]

The system for automatic control of cold forging process has been build up in the lab area of institute (Fig. 5).

Valve Bloc

Fig.5. Hydraulic unit with valve bloc, hydraulic press with tool set and control unit

Table 1. Tool set and technical specifications of experimental equipment

Measuring Equipment	
Punch Load	Strain Gauge
Die Load	Piezoelectric
Counterpunch Load	Piezoelectric
Punch Load	Magneto-Strictive

Counterpunch Stroke	Magneto-Strictive
Ram Stroke	Magneto-Strictive

Hydraulic Unit	
Max. Pressure	315 bar
Max. Flow Rate	460 l/min
Connected Load	250 kW
Servo Valves	4

Measuring equipment shown in Table 1 used for monitoring desired load and strokes respectively. Desired reproducibility of cup bottom height necessitates suitable resolution of measuring equipment. In case of magneto-stricitve measuring of punch and counterpunch stroke a resolution of 5 μ m is achievable. For the experimental tests the conventional backward cup extrusion tool set has been mounted on addition tool rack with integrated double-action hydraulic cylinder and integrated stroke measurement. Distance between punch and counterpunch nose or cup bottom height respectively has been monitored using a reference system. Piezoelectric load cells have been placed between counterpunch and double-action cylinder and die and pressure pads respectively. Initial measurement of load cells has been done in mounted condition using a reference load cell.[1]

3 TRENDS IN COLD FORGING

Process Comparison

(A)Conventional manufacturing \rightarrow Drilling Disadvantage: High material volume.

(B)Alternative manufacturing: Hollow forging without drilling Advantage: Minimized material usage→ resource efficient production.

Fig.6. Hollow Forging Hollow Transmission Shaft •Hollow shaft for double clutch transmission •Manufacturing sequence includes

Cold forging

Machining

Hollow shape impossible to manufacture by machining only

Fig.7. Transmission Shaft Hollow Pinion

- •Cold forged pinion with hollow conical head and shaft
- light weight design, Constant wall thickness
- •With forged inside hexagon at the end of the shaft

Fig.8. Hollow Pinion 4 RESULT AND DISCUSSION TIP TEST

The tip test can be used for determining the friction effect due to relative surface quality between the punch and bottom dies. Material properties obtained by the compression tests. The maximum load values were dependent on the type of lubricants applied.

In Fig.9, the measured tip distance was plotted with the measured load values for various lubrication conditions in the downsized tip test. In this figure, the tip distance and maximum load were non-dimensionalized by the tip thickness t=1.21 mm and 1000 kN, respectively. This test result shows a slope shift from the negative to the positive which is corresponding to the conventional one. This conversion was obtained by changing surface roughness of the counter punch from Ra = 0.61 μ m to 0.08 μ m for AL6061-O specimen. This is valid for the AL2024-O tip test result as shown in Fig.9 b.[4]

Thus, Ra reduction in the counter punch relative to the punch influenced the slope of linear relationship between the nondimensionalized tip distance and maximum load. Friction factor ratio (x = mfd/mfp) was determined to be dependent on the surface roughness ratio between the punch and counter punch. These values for AL6061-O and AL2024-O were 0.45 and 0.60, respectively. In order to characterize friction factors at both interfaces at the punch and counter punch, the friction at the sidewall was assumed to be the same as the one of the counter punch.[4]

T-SHAPE COMPRESSION TEST

Fig.10 shows the load curves obtained using the three different lubrication conditions. It can be seen that the forming load from mixed lubrication is a little lower than that from solid lubrication. The load using oil is the largest one because the lubricant is squeezed out of the contact zone by the specimen/tool pressure, so metal-to-metal contact occurs, which induces the large friction. On the contrary, with solid lubrication, the phosphate and soap coating can suffer large normal pressure. Hence a solid layer remains between tool and specimen, which can promote a low friction force during forming. For the mixed lubrication condition, the die is in contact with the phosphate and soap coating when the oil film is pushed out of the contact zone. Therefore, the load curves from mixed and solid lubrication condition are similar.[3]

Fig.9. Non-dimensionalized maximum load versus tip distance for

a) AL6061-O and b) AL2024-O

Fig.10. Load curves under different lubrication conditions

AUTOMATICALLY CONTROLLED (COLD) FORGING PRO-CESS

For automatically controlled (cold) forging process, tool set with additional hydraulic axis has been used. Raw parts have been machined out of EN AW 1050, shot blasted, coated with zinc stearate. Punch diameter has been chosen as Diameter 16 mm and die diameter was 20 mm. Before the punch touches the raw part counter punch has been pre accelerated to compensate system response time. Maximum forces of counter punch, punch and die depending from velocity ratio a are depicted. It is remarkable, that no force equilibrium is calculable due to the facts that maximumforces are not at the same stroke in any case.

5 CONCLUSON

It has been discovered that the tip test can be used to distinguish between the effects of different forming conditions, such as surface roughness, deformation speed, and the different kinds of lubricants and materials on friction. The x ratio and slope between the tip distance and maximum load fluctuate in response to the counterpunch's surface roughness. The slope changed from positive to negative when the counterpunch's surface roughness increased relative to the punch's surface roughness. The slope is discovered to be positive, though the counterpunch's surface roughness is substantially less severe than the punch's.

The T-Shape Compression Test yields the following conclusions:

1. This test results in a complex deformation path, high contact pressure, and relatively high surface expansion.

2. In this test, as corner radius and die V-groove angle increase, the sensitivity of the load curve slope to friction condition diminishes.

3. The oil can be easily squeezed out of the high pressure contact zone, but the solid lubricant has lower friction than oil lubricant. Solid and mixed lubricants perform lubrication in a manner that is comparable.

According to Automatically Controlled (Cold) Forging Process Using a controllable counterpunch punch loads can be reduced in case of an ideal velocity ratio of punch and counterpunch velocity can be chosen. Depending on chosen velocity ratio α , a significant reduction of punch force or punch load respectively is possible using described system.

REFERENCE

- M. Liewald, T. Schiemann, C. Mletzko, Automatically controlled (cold) forging process, Procedia CIRP 18, p.p.- 39 – 44, 2014. |
- [2] K.H. Jung, H.C. Lee, D.K. Kim, S.H. Kang, Y.T. Im, Friction measurement by the tip test for cold forging, Wear 286–287, p.p.-19–26, 2012
- [3] Q. Zhang, E Felder, S. Bruschi, Evaluation of friction condition in cold forging by using T-shape compression test, Journal of Materials Processing Technology 209, p.p.-5720– 5729, 2009
- [4] K.H. Jung, H.C. Lee, S.H. Kang, Y.T. Im, Effect of surface roughness on friction in cold forging, Journal of Achievements in Materials and Manufacturing Engineering, VOLUME 31, IS-SUE 2, December 2008

[5] http://www.cold-

flow.com/cf/category/coldforginghistory.html. [3 March, 2015] [6] http://en.m.wikipedia.org/wiki/forging [3 March, 2015]