
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

81 

 

 

 

 

 

 

 

 

Kernel Space ASLR Realistic Timing Side Channel Attacks 
 

Dr.Sachinandan Mohanty
1
*, Dr K Venkataramana

2
 

 
1
* Professor,Dept. Of Computer Science and Engineering, NIT , BBSR 

2
Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR 

 

sachinandanmohanty@thenalanda.com*,  k.venkata@thenalanda.com 

 
 

Abstract—A wide range of protection techniques have been 

developed in recent years to defend both user space and kernel 

space code due to the ubiquity of control-flow hijacking attacks. 

Examples that have been widely used include Address Space 

Layout Randomization, stack canaries, and non-executable 

memory (ASLR). When implemented appropriately, the attack 

surface is greatly reduced and common exploitation techniques are 

severely foiled (i.e., a particular system completely supports 

certain protective mechanisms and there are no information 

leaks). These approaches are supported by all current desktop and 

server operating systems, and ASLR has recently been introducto 

a number of mobile operating systems. 

 In this article, we examine how well kernel space ASLR 

protects against a local attacker who has limited access. We 

demonstrate how an attacker can use a general side channel attack 

to gather details about the organisation of the privileged address 

space against the memory management system. Our method is 

founded on the inherent fact that computer systems' many caches 

are shared resources. We provide three versions of our 

methodology and demonstrate the viability of our assaults on four 

various x86-based CPUs (both 32- and 64-bit architectures) as well 

as on virtual machines. As a result, on contemporary operating 

systems, we can successfully avoid kernel space ASLR. Also, we 

examine ways to lessen the impact of our attacks and propose and 

put into practise a defence strategy with minimal impact. 

  

Keywords-Address Space Layout Randomization; Timing At- 

tacks; Kernel Vulnerabilities; Exploit Mitigation 

I. INTRODUCTION 

Modern operating systems employ a wide variety of methods 

to protect both user and kernel space code against memory 

corruption attacks that leverage vulnerabilities such as stack 

overflows [1], integer overflows [2], and heap overflows [3]. 

Control-flow hijacking attempts pose a significant threat and 

have attracted a lot of attention in the security community due 

to their high relevance in practice. Even nowadays, new vul- 

nerabilities in applications, drivers, or operating system kernels 

are reported on a regular basis. To thwart such attacks, many 

mitigation techniques have been developed over the years. A few 

examples that have received widespread adoption include stack 

canaries [4], non-executable memory (e.g., No eXecute (NX) bit 

and Data Execution Prevention (DEP) [5]), and Address Space 

Layout Randomization (ASLR) [6]–[8]. 

Especially ASLR plays an important role in protecting com- 

puter systems against software faults. The  key  idea  behind this 

technique is to randomize the system’s virtual memory layout 

either every time a new code execution  starts  (e.g., upon process 

creation or when a driver is loaded) or on each 
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system reboot. While the initial implementations focused on 

randomizing user mode processes, modern operating 

systems such as Windows 7 randomize both user and kernel 

space. ASLR introduces diversity and randomness to a given 

system, which are both appealing properties to defend against 

attacks: an attacker that aims to exploit a memory corruption 

vulnerability does not know any memory addresses of data or 

code sequences which are needed to mount a control-flow 

hijacking attack. Even advanced exploitation techniques like 

return-to-libc [9] and return-oriented programming (ROP) 

[10] are hampered since an attacker does not know the virtual 

address of memory locations to which she can divert the 

control flow. As noted above, all major operating systems 

such as Windows, Linux, and Mac OS X have adopted 

ASLR and also mobile operating systems like Android and 

iOS have recently added support for this defense method 

[7], [11]–[13]. 

Broadly speaking, successful attacks against a system that 

implements ASLR rely on one of three conditions: 

1) In case not all loaded modules and other mapped 

memory regions have been protected with ASLR, an 

attacker can focus on these regions and exploit the fact 

that the system has not been fully randomized. This is an 

adoption problem and we expect that in the near future all 

memory regions (both in user space and kernel space) will 

be fully ran- domized [14], [15]. In fact, Windows 7/8 

already widely supports ASLR and the number of 

applications that do not randomize their libraries is 

steadily decreasing. Legacy libraries can also be forced to 

be randomized using the Force ASLR feature. 

2) If some kind of information leakage exists that discloses 

memory addresses [16]–[18], an attacker can obtain the 

virtual address of specific memory areas. She might use 

this knowledge to infer additional information that helps 

her to mount a control-flow hijacking attack. While such 

information leaks are still available and often used in 

exploits, we consider them to be software faults that will 

be fixed to reduce the attack surface [19], [20]. 

3) An attacker might attempt to perform a brute-force at- 

tack [21]. In fact, Shacham et al. showed that user mode 

ASLR on 32-bit architectures only leaves 16 bit of random- 

ness, which is not enough to defeat brute-force attacks. 

However, such brute-force attacks are not applicable for 

kernel space ASLR. More specifically, if an attacker wants 

to exploit a vulnerability in kernel code, a wrong offset will 
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typically lead to a complete crash of the system and thus 

an attacker has only one attempt to perform an exploit. 

Thus, brute-force attacks against kernel mode ASLR are 

not feasible in practice. 

In combination with DEP, a technique that enforces the W X 

(Writable xor eXecutable) property of memory pages, ASLR 

significantly reduces the attack surface. Under the assumption 

that the randomization itself cannot be predicted due to im- 

plementation flaws (i.e., not fully randomizing the system or 

existing information leaks), typical exploitation strategies are 

severely thwarted. 

In this paper, we study the limitations of kernel space ASLR 

against a local attacker with restricted privileges. We introduce 

a generic attack for systems running on the Intel Instruction 

Set Architecture (ISA). More specifically, we show  how  a 

local attacker with restricted rights can mount a timing-based 

side channel attack against the memory management system to 

deduce information about the privileged address space layout. 

We take advantage of the fact that the memory hierarchy present 

in computer systems leads to shared resources between user and 

kernel space code that can be abused to construct a side channel. 

In practice, timing attacks against a modern CPU are very 

complicated due to the many performance optimizations used 

by current processors such as hardware prefetching, speculative 

execution, multi-core architectures, or branch prediction that 

significantly complicate timing measurements [22]. Previous 

work on side-channels attacks against CPUs [23]–[25] focused 

on older processors  without  such  optimization  and  we  had 

to overcome many challenges to solve the intrinsic problems 

related to modern CPU features [22]. 

We have implemented three different attack strategies that 
are capable of successfully reconstructing (parts of) the kernel 

memory layout. We have tested these attacks on different Intel 

and AMD CPUs (both 32- and 64-bit architectures) on machines 

running either Windows 7 or Linux. Furthermore, we show that 

our methodology also applies to virtual machines. As a result, 

an adversary learns precise information about the (randomized) 

memory layout of the kernel. With that knowledge, she is 

enabled to perform control-flow hijacking attacks since she now 

knows where to divert the control flow to, thus overcoming 

the protection mechanisms introduced by kernel space ASLR. 

Furthermore, we also discuss mitigation strategies and show 

how the side channel we  identified as  part of  this work  can 

be prevented in practice with negligible performance overhead. 

In summary, the contributions of this paper are the following: 

• We present a generic attack to derandomize kernel space 

ASLR that relies on a side channel based on the memory 

hierarchy present in computer systems, which leads to tim- 

ing differences when accessing specific memory regions. 

Our attack is applicable in scenarios where brute-force 

attacks are not feasible and we assume that no implemen- 

tation flaws exist for ASLR. Because of the general nature 

of the approach, we expect that it can be applied to many 

operating systems and a variety of hardware architectures. 

• We present three different approaches to implement our 

methodology. We successfully tested them against systems 

running Windows 7 or Linux on both 32-bit and 64-bit 

Intel and AMD CPUs, and also the virtualization software 

VMware. As part of the implementation, we reverse- 

engineered an undocumented hash function used in Intel 

Sandybridge CPUs to distribute the cache among different 

cores. Our attack enables a local user with restricted 

privileges to determine the virtual memory address of key 

kernel memory locations within a reasonable amount of 

time, thus enabling ROP attacks against the kernel. 

• We discuss several mitigation strategies that defeat our 

attack. The runtime overhead of our preferred solution 

is not noticeable in practice  and  successfully  prevents 

the timing side channel attacks discussed in this paper. 

Furthermore, it can be easily adopted by OS vendors. 

II. TECHNICAL   BACKGROUND 

We review the necessary technical background information 

before introducing the methodology behind our attack. 

A. Address Space Layout Randomization 

As explained above, ASLR randomizes the system’s virtual 

memory layout either every time a new code execution starts or 

every time the system is booted [6]–[8], [26]. More specifically, 

it randomizes the base address of important memory structures 

such as for example the code, stack, and heap. As a result, 

an adversary does not know the virtual address of relevant 

memory locations needed to perform a control-flow hijacking 

attack (i.e., the location of shellcode or ROP gadgets). All 

major modern operating systems have implemented ASLR. For 

example, Windows implements this technique since Vista in 

both user and kernel space [12], Linux implements it with the 

help of the PaX patches [7], and MacOS ships with ASLR 

since version 10.5. Even mobile operating systems such as 

Android [11] and iOS [13] perform this memory randomization 

nowadays. 

The security gain of the randomization is twofold: First, 

it can protect against remote attacks, such as hardening a 

networking daemon against exploitation. Second, it can also 

protect against local attackers by randomizing the privileged 

address space of the kernel. This should hinder exploitation 

attempts of implementation flaws in kernel or driver code that 

allow a local application to elevate its privileges, a prevalent 

problem [27], [28]. Note that since a user mode application has 

no means to directly access the kernel space, it cannot determine 

the base addresses kernel modules are loaded to: every attempt 

to access kernel  space  memory  from  user  mode  results  in 

an access violation, and thus kernel space ASLR effectively 

hampers local exploits against the OS kernel or drivers. 

Windows Kernel Space ASLR: In the following we describe 

the kernel space ASLR implementation of Windows (both 32- 

bit and 64-bit). The information presented here applies to Vista, 

Windows 7, and Windows 8. We obtained this information by 
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kernel region (6mb, 3 large pages) in the subroutine MiReserveDriverPtes. The process 

works as follows: the kernel first reserves a memory region of 

2 MB using standard 4 KB sized pages (a driver  region). It 

then randomly chooses one out of 64 page-aligned start slots 

in this region where the first driver is loaded to. All subsequent 

drivers are then appended, until the end of the 2 MB region is 

hit, which is when the next driver is mapped to the beginning 

of the region (i.e., a wrap-around occurs). In case a region is 

full, a new 2MB driver region with a random start slot is 
Figure 1. ASLR for Windows kernel region (not proportional). Slot and 
load order (either (1) or (2)) are chosen randomly 

 

 
reverse-engineering the corresponding parts of the operating 

system code. 

During the boot process, the Windows loader is responsible 

for loading the two core components of the OS, the kernel 

image and the hardware abstraction layer (HAL), which is 

implemented as a separate module. At first, the Windows loader 

allocates a sufficiently large address region (the kernel region) 

for the kernel image and the HAL. The base address of this 

region is constant for a given system. Then, it computes a 

random number ranging from 0 to 31. This number is multiplied 

by the  page  size  (0x1000)  and  added  to  the  base  address 

of the reserved region to form a randomized load address. 

Furthermore, the order in which the kernel and the HAL are 

loaded is also randomized. Both components are always loaded 

consecutively in memory, there is no gap in between. This 

effectively yields 64 different slots to which the kernel image 

and the HAL each can be loaded (see also Figure 1). In 

summary, the formula for computing the kernel base address 

is as follows: 

k base = kernel  region + (r1 ∗ 0x1000) + (r2 ∗ hal  size), 

where r1     0 . . .  31    and r2      0, 1    are random numbers 

within the given ranges. Kernel and HAL are commonly mapped 

using so called large pages (2 MB) which improves performance 

by reducing the duration of page walks; both components 

usually require three large pages (= 6 MB). An interesting 

observation is that the randomization  is  already  applied  to 

the physical load addresses of the image and that  for  the 

kernel region, the formula 

virtual address = 0x80000000 + physical  address 

holds. The lower 31 bits of virtual kernel addresses are thus 

identical to the physical address. Again, this is only true for 

addresses in the kernel region and does not generally apply 

to kernel space addresses. For the rest of the paper, note that 

we assume that the system is started without the /3GB boot 

option that restricts the kernelspace to 1 GB. In this case, the 

kernelspace base address would be 0xC0000000 instead. 

Once   the   kernel    is    initialized,    all    subsequent 

drivers are loaded by the kernel’s driver load routine 

MmLoadSystemImage. This mechanism contains a different 

ASLR implementation to randomize the base address of drivers 

allocated. For session-wide drivers such as win32k.sys, a 

similar randomization with 64 slots for each driver image is 

applied in a  dedicated  session  driver  region.  We  observed 

that the loading order of drivers is always the same in practice. 

B. Memory Hierarchy 

There is a natural trade-off between the high costs of fast 

computer memory and the demand for large (but inexpensive) 

memory resources. Hence, modern computer systems are operat- 

ing on hierarchical memory that is built from multiple stages of 

different size and speed. Contemporary hierarchies range from 

a few very fast CPU registers over different levels of cache to a 

huge and rather slow main memory. Apparently, with increasing 

distance to the CPU the memory gets slower, larger, and cheaper. 

We focus on the different caches that are used to speed up 

address translation and memory accesses for code and data. 

As illustrated in Figure 2, each CPU core typically contains 

one dedicated Level 1 (L1) and Level 2 (L2) cache and often 

there is an additional Level 3 (L3) shared cache (also called 

last level cache (LLC)). On level 1, instructions and data are 

cached into distinct facilities (ICACHE and DCACHE), but on 

higher stages unified caches are used. The efficiency of cache 

usage is justified by the temporal and spatial locality property of 

memory accesses [29]. Hence, not only single bytes are cached, 

but always chunks of adjacent memory. The typical size of such 

a cache line on x86/x64 is 64 bytes. 

One essential question is where to store certain memory 

content in the caches and how to locate it quickly on demand. 

All described caches operate in an n-way set associative mode. 

Here, all available slots are grouped into sets of the size n 

and each memory chunk can be stored in all slots of one 

particular set. This target set is determined by a  bunch  of 

cache index bits that  are  taken  from  the  memory  address. 

As an example, consider a 32-bit address and a typical L3 

cache of 8 MB that is 16-way set associative. It consists of 

(8, 192 1, 024)/64 = 131, 072 single slots that are grouped into 

131, 072/16 = 8, 192 different sets. Hence, 13 bits are needed 

to select the appropriate set. Since the lower 6 bits (starting with 

bit 0) of each address are used to select one particular byte from 

each cacheline, the bits 18 to 6 determine the set. The remaining 

upper 13 bits form the address tag, that has to be stored with 

each cache line for the later lookup. 

One essential consequence of the set associativity is that 

memory addresses with identical index bits compete against 

the available slots of one set. Hence, memory accesses may 

… 

… 
ntoskrnl HAL … 

… HAL ntoskrnl … 

… 
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evict and replace other memory content from the caches. One 

common replacement strategy is Least Recently Used (LRU), in 

which the entry which has not been accessed for the longest time 

is replaced. Since managing real timestamps is not affordable in 

practice, the variant Pseudo-LRU is used: an additional reference 

bit is stored with each cacheline that is set on each access. Once 

all reference bits of one set are enabled, they are all cleared 

again. If an entry from a set has to be removed, an arbitrary 

one with a cleared reference bit is chosen. 

Virtual Memory and Address Translation: Contemporary 

operating systems usually work on paged virtual memory in- 

stead of physical memory. The memory space is divided into 

equally sized pages that are either regular pages (e.g., with 

a size of 4 KB), or large pages (e.g., 2 or 4 MB). When 

accessing memory via virtual addresses (VA), they first have 

to be translated into physical addresses (PA) by the processor’s 

Memory Management Unit (MMU) in a page walk: the virtual 

address is split into several parts and each part operates as an 

array index for certain levels of page tables. The lowest level 

of the involved paging structures (PS), the Page Table Entry 

(PTE), contains the resulting physical frame number. For large 

pages, one level less of PS is needed since a larger space of 

memory requires less bits to address. In that case, the frame 

number is stored one level higher in the Page Directory Entry 

(PDE). In case of Physical Address Extension (PAE) [30] or 

64-bit mode, additional PS levels are required, i.e. the Page 

Directory Pointer (PDP) and the Page Map Level 4 (PML4) 

structures. Appendix A provides more information and examples 

of such address resolutions for PAE systems. 

In order to speed up this address translation process, resolved 

address mappings are cached in Translation Lookaside Buffers 

(TLBs). Additionally, there often are dedicated caches for the 

involved higher level PS [31]. Depending on the underlying 

system, the implementation of these translation caches differs a 

lot. Current x86/x64 systems usually have two different levels 

of TLB: the first stage TLB0 is split into one for data (DTLB) 

and another for instructions (ITLB), and the second stage TLB1 

is used for both. Further, the TLBs are often split into one part 

for regular pages and another for large pages. 

Even with TLBs and PS caches, the address translation takes 

some clock cycles, during which the resulting physical address 

is not available yet. As an effect, the system has to wait for 

the address translation before it can check the tag values of the 

caches. Therefore, lower caches (mostly only the L1 cache) are 

virtually indexed, but physically tagged. This means that the 

cache index is taken from the virtual address but the stored 

tag values from the physical one. With that approach, the 

corresponding tag values already can be looked up and then 

quickly compared once the physical address is available. 

Figure 2 illustrates all the different caching facilities of the 

Intel i7 processor. The vertical arrows are labeled with the 

amount of clock cycles that are normally required to access the 

particular stages [32], [33]. The dashed arrow (pointing from the 

TLB1 to the DCACHE) indicates that PS are not only cached 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Intel i7 memory hierarchy plus clock latency for the relevant stages 
(based on [32], [33]) 

 

 
in the TLB or PML4/PDP/PDE caches, but may also reside as 

regular data within the DCACHE or higher level unified caches. 

An essential part of each virtual memory system is the page 

fault handler (PFH). It is invoked if a virtual address cannot be 

resolved, i.e., the page walk encounters invalid PS. This may 

happen for several reasons (e.g., the addressed memory region 

has been swapped out or the memory is accessed for the first 

time after its allocation). In such cases, the error is handled 

completely by the PFH. Although this happens transparently, 

the process induces a slight time delay. Besides translation 

information, the PS also contain several protection flags (e.g., 

to mark memory as non-executable or to restrict access to 

privileged code only). After successful translation, these flags 

are checked against the current system state and in case of a 

protection violation, the PFH is invoked as well. In that case an 

access violation exception is generated that has to be caught and 

handled by the executing process. Again, a slight time delay may 

be observable between accessing the memory and the exception 

being delivered to the exception handler. 

III. TIMING SIDE CHANNEL ATTACKS 

Based on this background information, we can now explain 

how time delays introduced by the memory hierarchy enable a 

side channel attack against kernel-level ASLR. 

A. Attacker Model 

We focus in the following on local attacks against kernel 

space ASLR: we assume an adversary who already has restricted 

access to the system (i.e., she can run arbitrary applications) but 

does not have access to privileged kernel components and thus 

cannot execute privileged (kernel mode) code. We also assume 

the presence of a user mode-exploitable vulnerability within 

kernel or driver code, a common problem [27]. The exploitation 

of this software fault requires to know (at least portions of) 

the kernel space layout since the exploit at some point either 

jumps to an attacker controlled location or writes to an attacker 

controlled location to divert the control flow. 

Since the entire virtual address space is divided in both user 

and kernel space, an attacker might attempt to directly jump to a 
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user space address from within kernel mode in an exploit, thus 

circumventing any kernel space ASLR protections. However, 

this is not always possible since the correct user space might 

not be mapped at the time of exploitation due to the nature of the 

vulnerability [14]. Furthermore, this kind of attack is rendered 

impossible with the introduction of the Supervisor Mode Execu- 

tion Protection (SMEP) feature of modern CPUs that disables 

execution of user space addresses in kernel mode [34]. 

We also assume that the exploit uses ROP techniques due to 

the W X property enforced in modern operating systems. This 

requires to know a sufficiently large amount of executable code 

in kernel space to enable ROP computations [10], [35]. Schwartz 

et al. showed that ROP payloads can be built automatically 

for 80% of Linux programs larger than 20 KB [36]. Further, 

we assume that the system fully supports ASLR and that no 

information leaks exist that can be exploited. Note that a variety 

of information leaks exist for typical operating systems [18], but 

these types of leaks stem from shortcomings and inconsequences 

in the actual implementation of the specific OS. Developers can 

fix these breaches by properly adjusting their implementation. 

Recently, Giuffrida et al. [37] argued that kernel information 

leakage vulnerabilities are hard to fix. While we agree that it is 

not trivial to do so, we show that even in the absence of any 

leak, we can still derandomize kernel space ASLR. 

One of our attacks further requires that the userland process 

either has access to certain APIs or gains information about 

the physical frame mapping of at least one page in user space. 

However, since this prerequisite holds only for one single attack 

– which further turns out to be our least effective one – we do 

not consider it in the general attacker model but explain its 

details only in the corresponding Section IV-A. 

In summary, we assume that the system correctly implements 

ASLR (i.e., the complete system is randomized and no infor- 

mation leaks exist) and that it enforces the W X property. 

Hence, all typical exploitation strategies are thwarted by the 

implemented defense mechanisms. 

B. General Approach 

In this paper, we present generic side channels against proces- 

sors for the Intel ISA that enable a restricted attacker to deduce 

information about the privileged address space by timing certain 

operations. Such side channels emerge from intricacies of the 

underlying hardware and the fact that parts of the hardware 

(such as caches and physical memory) are shared between both 

privileged and non-privileged code. Note that all the approaches 

that we present in this paper are independent of the underlying 

operating system: while we tested our approach mainly on 

Windows 7 and Linux, we are confident that the attacks also  

apply for other versions of Windows or even other operating 

systems. Furthermore, our attacks work on both 32- and 64-bit 

systems. 

The methodology behind our timing measurements can be 

generalized in the following way: At first, we attempt to set the 

system in a specific state from user mode. Then we measure the 

duration of a certain memory access operation. The time span of 

this operation then (possibly) reveals certain information about 

the kernel space layout. Our timing side channel attacks can be 

split into two categories: 

• L1/L2/L3-based Tests: These tests focus on the L1/L2/L3 

CPU caches and the time needed for fetching data and code 

from memory. 

• TLB-based Tests: These tests focus on TLB and PS caches 

and the time needed for address translation. 

To illustrate the approach, consider the following example: we 

make sure that a privileged code portion (such as the operating 

system’s system call handler) is present within the caches by 

executing a system call. Then, we access a designated set of 

user space addresses and execute the system call again. If the 

system call takes longer than expected, then the access of user 

space addresses has evicted the system call handler code from 

the caches. Due to the structure of modern CPU caches, this 

reveals parts of the physical (and possibly virtual) address of 

the system call handler code as we show in our experiments. 

Accessing Privileged Memory: As  explained  in  Sec- 

tion II-B, different caching mechanisms determine the duration 

of a memory access: 

• The TLB and PS caches speed up the translation from the 

virtual to the physical address. 

• In case no TLB exists, the PS entries of the memory 

address must be fetched during the page walk. If any of 

these entries are present in the normal L1/L2/L3 caches, 

then the page walk is accelerated in a significant (i.e., 

measurable) way. 

• After the address translation, the actual memory access is 

faster if the target data/code can be fetched from the L1/- 

L2/L3 caches rather than from the RAM. 

While it is impossible to access kernel space memory directly 

from user mode, the nature of the cache facilities still enables 

an attacker to indirectly measure certain side-effects. More 

precisely, she can directly access a kernel space address from 

user mode and measure the duration of the induced exception. 

The page fault will be faster if a TLB entry for the correspond- 

ing page was present. Additionally, even if a permission error 

occurs, this still allows to launch address translations and, hence, 

generate valid TLB entries by accessing privileged kernel space 

memory from user mode. 

Further, an attacker can (to a certain degree) control which 

code or data regions are accessed in kernel mode by forcing 

fixed execution paths and known data access patterns in the 

kernel. For example, user mode code can perform a system call 

(sysenter) or an interrupt (int). This will force the CPU 

to cache the associated handler code and data structures (e.g., 

IDT table) as well as data accessed by the handler code (e.g., 

system call table). A similar effect can be achieved to cache 

driver code and data by indirectly invoking driver routines from 

user mode. 

Note that the x86/x64 instruction set also contains a num- 

ber of instructions for explicit cache control (e.g., invlpg, 
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Method Requirements Results Environment Success 

Cache Probing 
 

Double Page Fault 
Cache Preloading 

large pages or PA of eviction buffer, partial informa- 
tion about kernel region location 
none 
none 

ntoskrnl.exe and hal.sys 

allocation map, several drivers 
win32k.sys 

all 
 

all but AMD 
all 

C 

C 
C 

Table I 
SUMMARY OF TIMING SIDE CHANNEL ATTACKS AGAINST KERNEL SPACE ASLR ON WINDOWS. 

 

 

invd/wbinvd, clflush, or prefetch) [30]. However, 

these instructions are either privileged and thus cannot be called 

from user mode, or they cannot be used with kernel space 

addresses from user mode. Hence, none of these instructions 

can be used for our purposes. As a result, we must rely on 

indirect methods as explained in the previous paragraphs. 

C. Handling Noise 

While performing our timing measurements we have to deal 

with different kinds of noise that diminish the quality of our 

data if not addressed properly. Some of this noise is caused by 

the architectural peculiarities of modern CPUs [22]: to reach 

a high parallelism and work load, CPU developers came up 

with many different performance optimizations like hardware 

prefetching, speculative execution, multi-core architectures, or 

branch prediction. We have adapted our measuring code to take 

the effects of these optimizations into account. For example, 

we do not test the memory in consecutive  order  to  avoid 

being influenced by memory prefetching. Instead, we use access 

patterns that are not influenced by these mechanisms at all. 

Furthermore, we have to deal with the fact that our tool is not 

the only running process and there may be a high CPU load 

in the observed system. The thread scheduler of the underlying 

operating system periodically and, if required, also preemptively 

interrupts our code and switches the execution context. If we 

are further running inside a virtual machine, there  is  even 

more context switching when a transition between the virtual 

machine monitor and the VM (or between different VMs) takes 

place. Finally, since all executed code is operating on the same 

hardware, also the caches have to be shared to some extent. 

As mentioned above, our approach is based on two key opera- 

tions: (a) set the system into a specific state and (b) measure the 

duration of a certain memory access operation. Further, these 

two operations are performed for each single memory address 

that is probed. Finally, the complete experiment is repeated 

multiple times until consistent values have been collected. While 

it is now possible — and highly probable — that our code is 

interrupted many times while probing the complete memory, it 

is also very likely that the low-level two step test operations can 

be executed without interruption. The mean duration of these 

two steps depends on the testing method we perform, but even 

in the worst case it takes no more than 5,000 clock cycles. 

Since modern operating systems have time slices of at least 

several milliseconds [38], [39], it is highly unlikely that the 

scheduler interferes with our measurements. Accordingly, while 

there may be much noise due to permanent interruption of our 

experiments, after a few iterations we will eventually be able 

to test each single memory address without interruption. This 

is sufficient since we only need minimal measurement values, 

i.e., we only need one measurement without interruption. 

 

IV. IMPLEMENTATION AND RESULTS 

We now describe three different implementations of timing 

side channel attacks that can be applied independently from 

each other. The goal of each attack is to precisely locate some 

of the currently loaded kernel modules from user mode by 

measuring the time needed for certain memory accesses. Note 

that an attacker can already perform a ROP-based attack once 

she has derandomized the location of a few kernel modules or 

the kernel [35], [36]. 

Depending on the randomness created by the underlying 

ASLR implementation, the first attack might still require partial 

information on the location for the kernel area. For the Windows 

ASLR implementation (see Section II-A), this is not the case 

since only 64 slots are possible of the kernel. The first attack 

requires either the presence of two large pages or the knowledge 

of the physical address of a single page in user space. Our 

second attack has no requirements. However, due to the way 

the AMD CPU that we used during testing behaves in certain 

situations, this attack could not be mounted on this specific 

CPU. The third attack has no requirements at all. 

We have evaluated our implementation on the 32-bit and 64- 

bit versions of Windows 7 Enterprise and Ubuntu Desktop 11.10 

on the following (native and virtual) hardware architectures 

to ensure that they are commonly applicable on a variety of 

platforms: 

1) Intel i7-870 (Nehalem/Bloomfield, Quad-Core) 

2) Intel i7-950 (Nehalem/Lynnfield, Quad-Core) 

3) Intel i7-2600 (Sandybridge, Quad-Core) 

4) AMD Athlon II X3 455 (Triple-Core) 

5) VMWare Player 4.0.2 on Intel i7-870 (with VT-x) 

Table I provides a high-level overview of our methods, their 

requirements, and the obtained results. We implemented an 

exploit for each of the three attacks. 

For the sake of simplicity, all numbers presented in the re- 

mainder of this section were taken using Windows 7 Enterprise 

32-bit. Note that we also performed these tests on Windows 7 

64-bit and Ubuntu Desktop (32-bit and 64-bit) and can confirm 

that they work likewise. The Ubuntu version we used did not 

employ kernel space ASLR yet, but we were able to determine 

the location of the kernel image from user space. In general, 
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this does not make any difference since the attacks also would 

have worked in the presence of kernel space ASLR. 

In the following subsections, we explain the attacks and 

discuss our evaluation results. 

A. First Attack: Cache Probing 

Our first method is based on the fact that multiple memory 

addresses have to be mapped into the same cache set and, 

thus, compete for available slots. This can be utilized to infer 

(parts of) virtual  or  physical  addresses  indirectly  by  trying 

to evict them from the caches in a controlled manner. More 

specifically, our method is based on the following steps: first, the 

searched code or data is loaded into the cache indirectly (e.g., 

by issuing an interrupt or calling sysenter). Then certain 

parts of the cache are consecutively replaced by accessing 

corresponding addresses from a user-controlled eviction buffer, 

for which the addresses are known. After each replacement, 

the access time to the searched kernel address is measured, for 

example by issuing the system call again. Once the measured 

time is significantly higher, one can be sure that the previously 

accessed eviction addresses were mapped into the same cache 

set. Since the addresses of these colliding locations are known, 

the corresponding cache index can be obtained and obviously 

this is also a part of the searched address. 

Several obstacles have to be addressed when performing 

these timing measurements in practice. First, the correct kind 

of memory access has to be performed: higher cache levels are 

unified (i.e., there are no separate data and instruction caches), 

but on lower levels either a memory read/write access or an 

execution has to be used in order to affect the correct cache 

type. Second, accessing the colliding addresses only once is not 

enough. Due to the Pseudo-LRU algorithm it may happen that 

not the searched address is evicted, but one from the eviction 

buffer. Therefore, it is necessary to access each of the colliding 

addresses twice. Note that it is still possible that code within 

another thread or on other CPUs concurrently accesses the 

search address in the meantime, setting its reference bit that way. 

To overcome this problem, all tests have to be performed several 

times to reduce the influence of potential measuring errors and 

concurrency. 

More serious problems arise due to the fact that the cache 

indexes on higher levels are taken from the physical instead of 

the virtual addresses. In our experiments, the eviction buffer is 

allocated from user mode and, hence, only its virtual address is 

known. While it is still possible to locate the colliding cacheset, 

no information can be gathered about the corresponding physical 

addresses. In general, even if the physical address of the 

searched kernel location is known, this offers no knowledge 

about its corresponding virtual address. However, the relevant 

parts of the virtual and physical address are identical for the 

kernel region of Windows (see Section II-A). Hence, all the 

relevant bits of the virtual address can be obtained from the 

physical address. 

Cache  probing  with  the  latest  Intel  CPUs  based  on  the 

Sandybridge [30] architecture is significantly harder, even if 

the attacker has a contiguous region of memory for which all 

corresponding physical addresses are known. These processors 

employ a distributed last level cache [30] that is split into 

equally sized cache slices and each of them is dedicated to 

one CPU core. This approach increases the access bandwidth 

since several L3 cache accesses can be performed in parallel. In 

order to uniformly distribute the accesses to all different cache 

slices, a hash function is used that is not publicly documented. 

We thus had to reconstruct this hash function in a black-box 

manner before cache probing can be performed, since otherwise 

it is unknown which (physical) addresses are mapped into which 

cache location. We explain our reverse-engineering approach 

and the results in a side note before explaining the actual 

evaluation results for our first attack. 

1) Side Note: Sandybridge Hash Function: In order to re- 

construct the Sandybridge hash function, we utilized the Intel 

i7-2600 processor. This CPU has an 8 MB L3 cache and 4 cores, 

resulting in 2 MB L3 slices each. Hence, the hash function has 

to decide between 4 different slices (i.e., resulting in 2 output 

bits). Since our testing hardware had 4 GB of physical memory, 

we have reconstructed the hash function for an input of 32 bits. 

In case of larger physical memory, the same method can be 

applied to reverse the influence of the upper bits as well. 

We started with the reasonable assumption that L3 cachelines 

on this  CPU  still  consist  of  64  bytes.  Hence,  the  lowest 

6 bits of each address operate as an offset and, therefore, do 

not contribute as input to the hash function. Accordingly, we 

assumed a function h : 0, 1 32−6 0, 1 2. 

In order to learn the relationship between the physical ad- 

dresses and the resulting cache slices, we took one arbitrary 

memory location and an additional eviction buffer of 8 MB 

and tried to determine the colliding addresses within (i.e., those 

which are mapped into the same cacheset of the same cache 

slice). Since the L3 cache operates on physical addresses, the 

eviction buffer had to be contiguous. Therefore, we used our 

own custom driver for this experiment. 

Performance optimization features of modern CPUs like hard- 

ware prefetching, speculative execution, and branch prediction 

make it impossible to directly identify single colliding ad- 

dresses. Therefore, we performed a two-step experiment: (1) we 

identified eviction buffer regions of adjacent memory addresses 

that collide with the probe address and then (2) we located 

the particular colliding addresses within these regions. We 

have performed these tests several hundred times with different 

physical addresses in order to gain variety in the test data. As a 

result of each single test we got a tuple (p, CA = ca1, ca2, ... ) 

whereas p is the used probe address and each cai is a colliding 

address from our eviction buffer. By manually comparing those 

tuples (p, CA) and (p’, CA’) with a hamming distance of one 

between p and p’, we were able to learn the influence of 

particular bits on the colliding addresses from CA and CA’. 

In the end we were able to fully reconstruct the hashing 

function h that decides which cache slice is used for a given 
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Cache index Block offset evict the syscall handler code from the cache. Step 3 measures 

if the eviction was successful. If we hit the correct set i, then 

the second sysenter takes considerably longer and from i 
we can deduce the lower parts of the physical address of the 

syscall handler. Along with the address of the kernel region, 
h1 = b31 ⊕ b30 ⊕ b29 ⊕ b27 ⊕ b25 ⊕ b23 ⊕ b21 ⊕ b19 ⊕ b18 

h2 = b31 ⊕ b29 ⊕ b28 ⊕ b26 ⊕ b24 ⊕ b23 ⊕ b22 ⊕ b21 ⊕ b20 ⊕ b19 ⊕ b17 

Figure 3.     Results for the reconstruction of the undocumented Sandybridge 
hash function 
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this yields the complete virtual address of the syscall handler, 

and thus the base of the entire kernel and the HAL. 

We performed extensive tests on the  machine powered  by 

an Intel i7-870 (Bloomfield) processor. We executed the cache 

probing attack 180 times; the machine was rebooted after each 

test and we waited for a random amount of time before the 
Kernel Base VA kernel_region base address randomized zero measurements took place to let the system create artificial noise. 

Kernel PA/VA 

PA 

 
 

tag 

identical for virtual and physical address (in kernel_region) 

L3 cache index 

 
 

cacheline 

Figure 5 shows the cache probing measurements. The x-axis 

consists of the different L3 cache sets (8, 192 in total) and 

Figure 4. Correlation of different memory addresses 

 

 
address. It turned out that only the bits 31 to 17 are considered 

as input values. Each cache slice operates as a separate smaller 

2 MB cache, whereas the address bits 16 to 6 constitute as the 

cache index (11 bits are necessary to address all sets of such 

a 2 MB cache). Figure 3 shows how the 32 bits of a physical 

address are used as inputs to the hash function, cache index, 

and block offset. 

2) Evaluation Results: We evaluated cache probing on all 

of our testing machines. We assume that the base address of 

the kernel region (see kernel base from Section  II-A)  is 

known. This is a reasonable assumption in practice since this 

information can be reliably extracted using the method presented 

in Section IV-B. In Windows this address actually is constant 

for a particular system. 

Figure 4 shows the  correlation  of  the  different  parts  of 

the virtual and  physical  address  inside  the  kernel  region. 

In essence, bits 16 to 12 of the kernel’s base address are 

randomized in Windows’ ASLR implementation and must be 

known by an attacker. Since the PA and VA for bits 30 to 0 are 

identical in the kernel region, it is also sufficient to know bits 

16 to 12 of the physical address. This bit range overlaps with 

the L3 cache index. In other words: if the L3 cache index is 

known, then an attacker can tell the virtual base address of the 

kernel. 

We used cache probing to extract parts of the physical address 

of the system call handler KiFastCallEntry. The offset 

from this function to the kernel’s base address is static and 

known. If we know the address of this function, then we also 

know the base address of the kernel (and HAL). 

We performed the following steps for all cache sets i: 

1) Execute sysenter with an unused syscall number. 

2) Evict cache set i using the eviction buffer. 

3) Execute sysenter again and measure the duration. 

The unused syscall number minimizes the amount of executed 

kernel mode code since it causes the syscall handler to imme- 

diately return to user mode with an error. Step 1 makes sure 

that the syscall handler is present in the caches. Step 2 tries to 

the y-axis is the duration of the second system call handler 

invocation in CPU clocks, after the corresponding cache set 

was evicted. The vertical dashed line indicates the correct value 

where the system call handler code resides. There is a clear 

cluster of high values at this dashed line, which can be used to 

extract the correct cache set index and thus parts of the physical 

(and possibly virtual) address. We were able to successfully 

determine the correct syscall handler address in each run and 

there were no false positives. The test is fast and generally takes 

less than one second to finish. 

3) Discussion: For successful cache probing attacks, an 

adversary needs to know the physical addresses of the eviction 

buffer, at least those bits that specify the cache set. Furthermore, 

she somehow has to find out the corresponding virtual address 

of the kernel module from its physical one. This problem is 

currently solved by using large pages for the buffer, since 

under Windows those always have the lowest bits set to 0. 

Therefore, their first byte always has a cache index of 0 and 

all following ones can be calculated from that. However, this 

method does not work with Sandybridge processors, since there 

we need to know the complete physical address as input to the 

hash function that decides on which cache slice an address is 

mapped. Furthermore, allocating large pages requires a special 

right under Windows (MEM_LARGE_PAGES), which first has 

 

Figure 5. Cache probing results for Intel i7-870 (Bloomfield) 
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to be acquired somehow. One possible way to overcome this 

problem is to exploit an application that already possesses this 

right. 

In case of non-Sandybridge processors, large pages are not 

needed per se. It is only necessary to know the physical start 

address of the eviction buffer. More generically, it is only 

necessary to know parts of the physical base address of one 

user space address, since this can then be used to align the 

eviction buffer. Our experiments have shown that these parts of 

the physical base address of the common module ntdll, which 

is always mapped to user space, is always constant (even after 

reboots). Though the concrete address varies depending on the 

hardware and loaded drivers and is thus difficult to compute, 

the value is deterministic. 

B. Second Attack: Double Page Fault 

The second attack allows us to reconstruct the allocation of 

the entire kernel space from user mode. To achieve this goal, 

we take advantage of the behavior of the TLB cache. When we 

refer to an allocated page, we mean a page that can be accessed 

without producing an address translation failure in the MMU; 

this also implies that the page must not be paged-out. 

The TLB typically works in the following way: whenever 

a memory access results in a successful page walk due to a 

TLB miss, the MMU replaces an existing TLB entry with the 

translation result. Accesses to non-allocated virtual pages (i.e., 

the present bit in the PDE or PTE is set to zero) induce a page 

fault and the MMU does not create a TLB entry. However, when 

the page translation was successful, but the access permission 

check fails (e.g., when kernel space is accessed from user mode), 

a TLB entry is indeed created. Note that we observed this 

behavior only on Intel CPUs and within the virtual machine. 

In contrast, the AMD test machine acted differently and never 

created a TLB entry in the mentioned case. The double page 

fault method can thus not be applied on our AMD CPU. 

The behavior on Intel CPUs can be exploited to reconstruct 

the entire kernel space from user mode as follows: for each 

kernel space page p, we first access p from user mode. This 

results in a page fault that is handled by the operating system 

and forwarded to the exception handler of the process. One of 

the following two cases can arise: 

• p refers to an allocated page: since the translation is 

successful, the MMU creates a TLB entry for p although 

the succeeding permission check fails. 

• p refers to an unallocated page: since the translation fails, 

the MMU does not create a TLB entry for p. 

Directly after the first page fault, we access p again and 

measure the time duration until this second page fault is 

delivered to the process’s exception handler. Consequently, if 

p refers to an allocated kernel page, then the page fault will be 

delivered faster due to the inherent TLB hit. 

Due to the many performance optimizations of modern CPUs 

and the concurrency related to multiple cores, a single measure- 

ment can contain noise and outliers. We thus probe the kernel 

space multiple times and only use the observed minimal access 

time for each page to reduce measurement inaccuracies. Figure 6 

shows measurement results on an Intel i7-950 (Lynnfield) CPU 

for eight measurements, which we found empirically to yield 

precise results. The dots show the minimal value (in CPU 

clocks) observed on eight runs. The line at the bottom indicates 

which pages are actually allocated in kernel space; a black bar 

means the page is allocated. As one can see, there is a clear 

correlation between the timing values and the allocation that 

allows us to infer the kernel memory space. 

We developed an algorithm that reconstructs the allocation 

from the timing values. In the simplest case, we can introduce 

a threshold value that differentiates allocated from unallocated 

pages. In the above example, we can classify all timing  val- 

ues below 5, 005 clocks as allocated and all other values as 

unallocated as indicated by the dashed line. This yields a high 

percentage of correct classifications. Depending on the actual 

CPU model, this approach might induce insufficient results due 

to inevitable overlap of timing values and thus other recon- 

struction algorithms are necessary. We implemented a second 

approach that aims at detecting transitions from allocated to 

unallocated memory by looking at the pitch of the timing curve, 

a straightforward implementation of a change point detection 

(CPD) algorithm [40]. Further measurement results and figures 

displaying the results are shown in Appendix B. 

1) Evaluation Results: We evaluated our double page fault 

based approach on the three Intel CPUs and the virtual machine, 

Table 2 shows a summary of the results. We employed the 

threshold algorithm on CPU (1) and the CPD algorithm on 

platforms (2)–(4). The numbers shown in the table are the 

average out of ten runs for each machine. Between each run, we 

rebooted the operating system to make sure that the kernel space 

allocation varies. We took a snapshot of the allocation with the 

help of a custom driver before we started the measurements to 

obtain a ground truth of the memory layout. Since the allocation 

might change while the measurements are running, the correct- 

 
 

Figure 6. Example of double page fault measurements for an Intel i7-950 
(Lynnfield) CPU 
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CPU model Correctness Runtime 
(1) i7-870 (Bloomfield) 96.42% 17.27 sec (8 it.) 
(2) i7-950 (Lynnfield) 99.69% 18.36 sec (8 it.) 
(3) i7-2600 (Sandybr.) 94.92% 65.41 sec (32 it.) 

(4) VMware on (1) 94.98% 72.93 sec (32 it.) 

Table II 
RESULTS FOR DOUBLE PAGE FAULT TIMINGS 

 

 
 

ness slightly decreases because of this effect. Nevertheless, we 

were able to successfully reconstruct the state of at least 94.92% 

of all pages in the kernel space on each machine. With the 

help of memory allocation signatures (a concept we introduce 

next) such a precision is easily enough to exactly reconstruct 

the location of many kernel components. 

The average runtime of the measurements varies between 18 

and 73 seconds and is therefore within reasonable bounds. One 

iteration is one probe of the entire kernel space with one access 

per page. As noted above, we empirically found that more than 

eight iterations on Nehalem CPUs do not produce better results. 

For Sandybridge and VMware, more iterations yielded more 

precise results, mainly due to the fact that there was more noise 

in the timings. 

2) Memory Allocation Signatures: The double page fault 

timings yield an estimation for the allocation map of the kernel 

space, but do not determine at which concrete base addresses 

the kernel and drivers are loaded to. However, the allocation 

map can be used, for example, to spot the kernel region (i.e., 

the memory area in which the kernel and HAL are loaded) due 

to the large size of this region, which can be detected easily. 

One could argue that, since the virtual size of each driver is 

known, one could find driver load addresses by searching for 

allocated regions which are exactly as big as the driver image. 

This does not work for two reasons: first, Windows kernel space 

ASLR appends most drivers in specific memory regions and thus 

there is usually no gap between two drivers (see Section II-A). 

Second, there are gaps of unallocated pages inside the driver 

images as we explain next. 

In contrast to the kernel region, Windows drivers are not 
mapped using large pages but using the standard 4 KB page 

granularity. Code and data regions of drivers are unpageable 

by default. However, it is possible for developers to mark 

certain sections inside the driver as pageable to reduce the 

memory usage of the driver. Furthermore, drivers typically have 

a discardable INIT section, that contains the initialization code 

of the driver which only needs to be executed once. All code 

pages in the INIT section are freed by Windows after the driver 

is initialized. Code or data in pageable sections that are never or 

rarely used are likely to be unallocated most of the time. Along 

with the size and location of the INIT section, this creates 

a memory allocation signature for each driver in the system. 

We can search for these signatures in the reconstructed kernel 

space allocation map to determine the actual load addresses of 

a variety of drivers. 

We evaluated the signature matching on all three Intel CPUs 

 
Table III 

EVALUATION OF ALLOCATION SIGNATURE MATCHING 

 

 

 
and the  virtual  machine.  At  first,  we  took  a  snapshot  of 

the kernel space with the help of a custom driver. Then we 

created signatures for each loaded driver. A signature essentially 

consists of a vector of boolean values that tell whether a page 

in the driver was allocated (true) or paged-out (false). Note that 

this signature generation step can be done by an attacker in 

advance to build a database of memory allocation signatures. 

In the next step, we rebooted the machine, applied the double 

page fault approach, and then matched the signatures against 

the reconstructed kernel space allocation map. To enhance the 

precision during the signature matching phase, we performed 

two optimizations: first, we rule out signatures that contain less 

than five transitions from allocated to paged-out memory to 

avoid false positives. Second, we require a match of at least 

96% for a signature, which we empirically found to yield the 

best results. 

The results are shown in Table 3. On machine (1), the 

signature matching returns the exact load addresses of 21 drivers 

(including big common drivers such as win32k.sys and 

ndis.sys); 141 drivers are loaded in total and 119 signatures 

were ruled out because they held too few transitions. Hence 

only one signature had a too low match ratio. All identified 

base addresses are correct, there are no false positives. Most of 

the other drivers could not be located since they are too small 

and their signatures thus might produce false positives. The 21 

located drivers hold 7, 431 KB of code, which is easily enough 

to mount a full ROP attack as explained previously [35], [36]. 

Similar results hold for the other CPUs. 

To assess whether the signatures are also portable across 

different CPUs, we took the signatures generated on machine 

(2) and applied them to machine (1). The operating system and 

driver versions of both machines are identical. This yields 9 hits 

with 2, 312 KB of code. This experiment shows that the different 

paging behavior in drivers is not fundamentally affected by 

differing hardware configurations. 

3) Discussion: Although the double page fault measurements 

only reveal which pages are allocated and which are not, this 

still can be used to derive precise base addresses as we have 

shown by using the memory allocation signature matching. 

Furthermore, the method can be used to find large page regions 

(especially the kernel region). 

C. Third Attack: Address Translation Cache Preloading 

In the previous section we have described an approach to 

reconstruct the allocation map of the complete kernel space. 

CPU model Matches Code size 
(1) i7-870 (Bloomfield) 21 7,431 KB 
(2) i7-950 (Lynnfield) 9 4,184 KB 
(3) i7-2600 (Sandybridge) 5 1,696 KB 
(4) VMware on (1) 18 7,079 KB 

(1) with signatures of (2) 9 2,312 KB 
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While it is often possible to infer the location of certain drivers 

from that, without driver signatures it only offers information 

about the fact that there is something located at a certain 

memory address and not what. However, if we want to locate a 

certain driver (i.e., obtain the virtual address of some piece of 

code or data from its loaded image), we can achieve this with 

our third implementation approach: first we flush all caches (i.e., 

address translation and instruction/data caches) to start with a 

clean state. After that, we preload the address translation caches 

by indirectly calling into kernel code, for example by issuing a 

sysenter operation. Finally, we intentionally generate a page 

fault by jumping to some kernel space address and measure the 

time that elapses between the jump and the return of the page 

fault handler. If the faulting address lies in the same memory 

range as the preloaded kernel memory, a shorter time will elapse 

due to the already cached address translation information. 

Flushing all caches from user mode cannot be done directly 

since the invlpg and invd/wbinvd are privileged instruc- 

tions. Thus, this has to be done indirectly by accessing suffi- 
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Figure 7. Extract of cache preloading measurements 

ciently many memory addresses to evict all other data from the 

cache facilities. This is trivial for flushing the address translation 

and L1 caches, since only a sufficient number of virtual memory 

addresses have to be accessed. However, this approach is not 

suitable for L2/L3 caches, since these are physically indexed 

and we do not have any information about physical addresses 

from user mode. Anyway, in practice the same approach as 

described above works if the eviction buffer is chosen large 

enough. We have verified for Windows operating systems that 

large parts of the physical address bits of consecutively allocated 

pages are in successive order as well. Presumably this is done 

for performance reasons to optimally distribute the data over the 

caches and increase the effectiveness of the hardware prefetcher. 

As our experiments have shown, even on Sandybrige CPUs one 

virtually consecutive memory buffer with a size twice as large 

as the L3 cache is sufficient to completely flush it. 

During our experiments we tried to locate certain system 

service handler functions within win32k.sys. To avoid cache 

pollution and obtain the best measuring results, we chose the 

system service bInitRedirDev, since it only executes 4 

bytes of code before returning. As a side effect, we  also 

located the System Service Dispatch/Parameter Tables (SSDT 

and SSPT) within that module, since these tables are accessed 

internally on each service call. 

In our implementation we first allocated a 16 MB eviction 

buffer and filled it with RET instructions. Then for each page 

p of the complete kernel space memory (or a set of selected 

candidate regions), we performed three steps: 

1) Flush all (address translation-, code- and unified) caches by 

calling into each cacheline (each 64th byte) of the eviction 

buffer. 

2) Perform sysenter to preload address translation caches. 

3) Call into some arbitrary address of page p and measure 

time until page fault handler returns. 

1) Evaluation Results: The steps described above have to 

be repeated several times to diminish the effects of noise and 

measuring inaccuracies. It turned out that the necessary amount 

of iterations strongly depends on the underlying hardware. 

Empirically we determined that around 100 iterations are needed 

on Nehalem, 60 on AMD, and only 30 on Sandybridge to 

reliably produce precise results. Inside the virtual machine, we 

had to further increase the number of iterations due to the noise 

that was generated by the virtual machine monitor. Nevertheless, 

by increasing it to 100 (the VM operated on the Sandybridge 

processor) this timing technique also worked successfully inside 

a virtualized environment. 

We learned that the noise could be additionally reduced by 

taking different addresses randomly from each probed page for 

each iteration. In addition, we found out that using relative 

time differences was less error-prone than using absolute values. 

Therefore, we enhanced our testing procedure by performing 

the measuring twice for each page: the first time like shown 

above and the second time without performing the syscall in 

between. By calculating the relative time difference between 

both timing values, we were able to measure the speedup of 

address translation caches for our particular scenario. Figure 7 

shows an extract of our measuring results for the Intel i7-950 

(Lynnfield) CPU. The x-axis displays the probed virtual address, 

while the y-axis displays the relative time difference in clock 

cycles. The two vertical lines indicate those locations where the 

searched system service handler function resp. the SSDT/SSPT 

were located. As one can easily see those memory regions have 

much higher timing difference values than the others. Though 

there was a lot of noise within the data, our algorithms were 

able to locate those regions correctly on all of our testing 

environments. 

While this method only reveals the memory page of the 

searched kernel module, it is still possible to reconstruct its 

c
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full virtual address. This can be achieved by obtaining the 

relative address offset of the probed code/data by inspecting the 

image file of the module. As the measuring operates on a page 

granularity, it is best suited to locate kernel modules that reside 

in regular pages. Nevertheless, with the described difference 

technique, also large page memory regions can be identified 

that contain certain code or data. Obviously, the exact byte 

locations within such regions cannot be resolved and, therefore, 

we have used it to locate win32k.sys in our experiments. 

Due to its size, this module is sufficient to perform arbitrary 

ROP attacks [35], [36]. 

2) Discussion: Our third proposed method has no remarkable 

limitations. However, depending on the size of the probed 

memory range and the amount of necessary test iterations, it 

may take some time to complete. The probing of a 3 MB region 

(this is the size of win32k.sys) for one iteration takes around 

27 seconds. Therefore, if an attacker has employed the double 

page fault method to identify an appropriate candidate region 

and then performs 30 iterations on a Sandybridge processor, it 

takes 13 minutes to perform the complete attack. However, since 

the relative offset of the searched kernel function can previously 

be obtained from the image file, the probed memory region can 

be reduced drastically, enabling to perform the test in a minute 

or less. If the location of candidate regions is not possible, our 

attack will still work but take longer time. Furthermore, the 

technique operates on page granularity. Hence, drivers residing 

in large pages can be located, but their exact byte offset cannot 

be identified without additional techniques. 

V. MITIGATION   APPROACHES 

Since the methods presented  in  the  previous  section  can 

be used to break current ASLR implementations, mitigation 

strategies against our attacks are necessary. To that end, there 

are several options for CPU designers and OS vendors. 

The root cause of our attacks is the concurrent usage of the 

same caching facilities by privileged and non-privileged code 

and data, i.e., the memory hierarchy is a shared resource. One 

solution to overcome this problem would be to split all caches 

and maintain isolated parts for user and kernel mode, respec- 

tively. Obviously, this imposes several performance drawbacks 

since additional checks had to be performed in several places 

and the maximum cache size would be cut in half for both 

separate caches (or the costs increase). 

A related mitigation attempt is to forbid user mode code 

to resolve kernel mode addresses. One way to achieve this is 

to modify the global descriptor table (GDT), setting a limit 

value such that the segments used in  non-privileged  mode 

only span the user space. However, doing so would render 

some CPU optimization techniques useless that apply when 

the flat memory model is used (in which all segments span 

the complete memory). Furthermore, the complete disabling 

of segmentation on 64-bit architectures makes this mitigation 

impossible. Another option would be to suppress the creation 

of TLB entries on successful address translation if an access 

violation happens, like it is done with the tested AMD CPU. 

Nevertheless, the indirect loading of kernel code, data, or 

address mappings through system calls still cannot be avoided 

with this method. 

Current ASLR implementations (at least under Windows) do 

not fully randomize the address space, but randomly choose 

from 64 different memory slots. By utilizing the complete mem- 

ory range and distributing all loaded modules to different places, 

it would be much harder to perform our attacks. Especially 

when dealing with a 64-bit memory layout, the time needed 

for measuring is several magnitudes higher and would increase 

the time needed to perform some of our attacks. Nevertheless, 

scattering allocated memory over the full address range would 

significantly degrade system performance since much more 

paging structures would be needed and spatial locality would 

be destroyed to a large extent. Furthermore, we expect that our 

double page fault attack even then remains practical. Due to the 

huge discrepancy between the 64-bit address space and the used 

physical memory, the page tables are very sparse (especially 

those one higher levels). Since page faults can be used to 

measure the depth of the valid page tables for a particular 

memory address, only a very small part of the complete address 

space actually has to be probed. 

We have proposed a method to identify mapped kernel 

modules by comparing their memory allocation patterns to a 

set of known signatures. This is possible because parts of these 

modules are marked pageable or discardable. If no code or data 

could be paged-out (or even deallocated) after loading a driver, it 

would be impossible to detect them with our signature approach. 

Again, applying this protection would decrease the performance, 

because unpageable memory is a scarce and critical system 

resource. 

One effective mitigation technique is to modify the execution 

time of the page fault handler: if there is no correlation between 

the current allocation state of a faulting memory address and the 

observable time for handling that, the timing side channel for 

address translation vanishes. This would hinder our attacks from 

Sections IV-B and IV-C. We have implemented one possible 

implementation for this method and verified that our measuring 

no longer works. To that end, we have hooked the page fault 

handler and normalized its execution time if unprivileged code 

raises a memory access violation on kernel memory. In that case 

we enforce the execution to always return back to user mode 

after a constant amount of clock cycles. For that purpose we 

perform a bunch of timing tests in advance to measure the timing 

differences for memory accesses to unallocated and allocated 

(for both regular and large) pages. Inside the hooked page fault 

handler we delay execution for the appropriate amount of time, 

depending on the type of memory that caused the exception. 

Since this happens only for software errors – or due to active 

probing – there is no general impact on system performance. 

Note that modifying the page fault handler renders our attack 

infeasible, but there might be other side channels an attacker can 

exploit to learn more about the memory layout of the kernel. 
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Even with normalizing the page fault handling time, our cache 

probing attack remains feasible. However, cache probing has 

one fundamental shortcoming: it only reveals information about 

physical addresses. If the kernel space randomization is only 

applied to virtual addresses, then knowing physical addresses 

does not help in defeating ASLR. 

The kernel (or an underlying hypervisor) may also try to 

detect suspicious access patterns from usermode to kernelspace, 

for example by limiting the amount of usermode page faults 

for kernel space addresses. Such accesses are necessary for 

two of the previously described methods. While our current 

implementations of these attacks could be detected without 

much effort that way, we can introduce artificial sleep times 

and random access patterns to mimicry benign behavior. In the 

end, this would lead to an increased runtime of the exploits. 

In case the attacks are mounted from within a VMM, the hy- 

pervisor might also provide the VM with incorrect information 

on the true CPU model and features, for example by modifying 

the cpuid return values. However, this might have undesirable 

side-effects on the guest operating system which also needs 

this information for optimizing cache usage. Furthermore, the 

architectural parameters of the cache (such as size, associativity, 

use of slice-hashing, etc.) can be easily determined from within 

the VM using specific tests. 

Finally, the most intuitive solution would be to completely 

disable the rdtsc instruction for usermode code, since then 

no CPU timing values could be obtained at all. However, many 

usermode applications actually rely on this operation and, hence, 

its disabling would cause significant compatibility issues. 

VI. RELATED WORK 

Timing and side channel attacks are well-know concepts in 

computer security and have been used to attack many kinds 

of systems, among others cryptographic implementations [41]– 

[43], OpenSSL [44], [45], SSH sessions [46], web applica- 

tions [47], [48], encrypted VoIP streams [49], [50], and virtual 

machine environments [51]–[53]. 

Closely related to our work is a specific kind of these attacks 

called cache games [24], [25], [54], [55]. In these attacks, an ad- 

versary analyzes the cache access of a given system and deduces 

information about current operations taking place. The typi- 

cal target of these attacks are cryptographic implementations: 

while the CPU performs encryption or decryption operations, 

an adversary infers memory accesses and uses the obtained 

information to derive the key or related information. In a recent 

work, Gullasch et al. showed for example how an AES key can 

be recovered from the OpenSSL 0.9.8n implementation [24] 

and Zhang et al. introduced similar attacks in a cross-VM 

context [53]. 

We apply the basic principle behind cache attacks in our work 

and introduce different ways how this general approach can 

be leveraged to obtain information about the memory layout 

of a given system. Previous work focused on attacks against 

the instruction/data caches and not on the address translation 

cache, which is conceptually different. We developed novel 

approaches to attack this specific aspect of a computer system. 

Furthermore, all documented cache attacks were implemented 

either for embedded processors or for older processors such 

as Intel Pentium M (released in March 2003) [24], Pentium 4E 

(released in February 2004) [25], or Intel Core Duo (released in 

January 2006) [23]. In contrast, we focus on the latest processor 

architectures and need to solve many obstacles related to modern 

performance optimizations in current CPUs [22]. To the best 

of our knowledge, we are the first to present timing attacks 

against ASLR implementations and to discuss limitations of 

kernel space ASLR against a local attacker. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we have discussed a generic, timing-based 

side channel attack against kernel space ASLR. Such side 

channels emerge from intricacies of the underlying hardware 

and the fact that parts of the hardware (such as caches and 

physical memory) are shared between both privileged and non- 

privileged mode. We have presented three different instances 

of this methodology that utilize timing measures to precisely 

infer the address locations of mapped kernel modules. We 

successfully tested our implementation on four different CPUs 

and within a virtual machine and conclude that these attacks are 

feasible in practice. As a result, a local, restricted attacker can 

infer valuable information about the kernel memory layout and 

bypass kernel space ASLR. 

As part of our future work, we plan to apply our methods to 

other operating systems such as Mac OS X and more kinds of 

virtualization software. We expect that they will work without 

many adoptions since the root cause behind the attacks lies in 

the underlying hardware and not in the operating system. We 

further plan to test our methods on other processor architectures 

(e.g., on ARM CPUs to attack ASLR on Android [11]). Again, 

we expect that timing side channel attacks are viable since the 

memory hierarchy is a shared resource on these architectures as 

well. 

Another topic for future work is the identification of methods 

to obtain the physical address of a certain memory location from 

user mode. One promising method would be to identify certain 

data structures that are always mapped to the same physical 

memory and use the technique of cache probing with them. First 

experiments have shown that certain parts of mapped system 

modules are constant for a given system (e.g., the physical base 

address of ntdll.dll). Another possibility is to instrument 

the characteristics of the Sandybridge hash function to locate 

colliding memory locations and infer the bits of their physical 

address. 
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APPENDIX A. 

ADDRESS RESOLUTION 

Figure 8 illustrates the address resolution for regular pages 

(upper part) and large pages (lower part) on PAE systems. 

Notice that in the first case, the resulting PTE points to one 

single frame. In the second case, the PDE points to the first one 

of a set of adjacent frames, that in sum span the same size as 

a large page. 

Figure 8.   Address resolution for regular and large pages on PAE systems 

 
 

 

Figure 9. Double page fault measurements on Intel i7-870 (Bloomfield) 
processor 

APPENDIX B. 

DOUBLE PAGE FAULT 

Figure 9 shows the double page fault measurements on an 

Intel i7-870 (Bloomfield) processor. It is not possible to use a 

simple threshold value to tell apart allocated from unallocated 

pages without introducing a large amount of faulty results. In 

the zoomed version in Figure 10, one can see that it is still 

possible to distinguish unallocated from unallocated pages. Note 

that this figure uses lines instead of dots to stress the focus on  

transitions from high to low values (or vice versa). We therefore 

use a change point detection (CPD) algorithm [40] in this case. 

 

 

 

 

 

 

 

 

 

 
Figure 10. Zoomed-in view of Figure 9 
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