
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

81

Kernel Space ASLR Realistic Timing Side Channel Attacks

Dr.Sachinandan Mohanty
1
*, Dr K Venkataramana

2

1
* Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

2
Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

sachinandanmohanty@thenalanda.com*, k.venkata@thenalanda.com

Abstract—A wide range of protection techniques have been

developed in recent years to defend both user space and kernel

space code due to the ubiquity of control-flow hijacking attacks.

Examples that have been widely used include Address Space

Layout Randomization, stack canaries, and non-executable

memory (ASLR). When implemented appropriately, the attack

surface is greatly reduced and common exploitation techniques are

severely foiled (i.e., a particular system completely supports

certain protective mechanisms and there are no information

leaks). These approaches are supported by all current desktop and

server operating systems, and ASLR has recently been introducto

a number of mobile operating systems.

 In this article, we examine how well kernel space ASLR

protects against a local attacker who has limited access. We

demonstrate how an attacker can use a general side channel attack

to gather details about the organisation of the privileged address

space against the memory management system. Our method is

founded on the inherent fact that computer systems' many caches

are shared resources. We provide three versions of our

methodology and demonstrate the viability of our assaults on four

various x86-based CPUs (both 32- and 64-bit architectures) as well

as on virtual machines. As a result, on contemporary operating

systems, we can successfully avoid kernel space ASLR. Also, we

examine ways to lessen the impact of our attacks and propose and

put into practise a defence strategy with minimal impact.

Keywords-Address Space Layout Randomization; Timing At-

tacks; Kernel Vulnerabilities; Exploit Mitigation

I. INTRODUCTION

Modern operating systems employ a wide variety of methods

to protect both user and kernel space code against memory

corruption attacks that leverage vulnerabilities such as stack

overflows [1], integer overflows [2], and heap overflows [3].

Control-flow hijacking attempts pose a significant threat and

have attracted a lot of attention in the security community due

to their high relevance in practice. Even nowadays, new vul-

nerabilities in applications, drivers, or operating system kernels

are reported on a regular basis. To thwart such attacks, many

mitigation techniques have been developed over the years. A few

examples that have received widespread adoption include stack

canaries [4], non-executable memory (e.g., No eXecute (NX) bit

and Data Execution Prevention (DEP) [5]), and Address Space

Layout Randomization (ASLR) [6]–[8].

Especially ASLR plays an important role in protecting com-

puter systems against software faults. The key idea behind this

technique is to randomize the system’s virtual memory layout

either every time a new code execution starts (e.g., upon process

creation or when a driver is loaded) or on each

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

82

system reboot. While the initial implementations focused on

randomizing user mode processes, modern operating

systems such as Windows 7 randomize both user and kernel

space. ASLR introduces diversity and randomness to a given

system, which are both appealing properties to defend against

attacks: an attacker that aims to exploit a memory corruption

vulnerability does not know any memory addresses of data or

code sequences which are needed to mount a control-flow

hijacking attack. Even advanced exploitation techniques like

return-to-libc [9] and return-oriented programming (ROP)

[10] are hampered since an attacker does not know the virtual

address of memory locations to which she can divert the

control flow. As noted above, all major operating systems

such as Windows, Linux, and Mac OS X have adopted

ASLR and also mobile operating systems like Android and

iOS have recently added support for this defense method

[7], [11]–[13].

Broadly speaking, successful attacks against a system that

implements ASLR rely on one of three conditions:

1) In case not all loaded modules and other mapped

memory regions have been protected with ASLR, an

attacker can focus on these regions and exploit the fact

that the system has not been fully randomized. This is an

adoption problem and we expect that in the near future all

memory regions (both in user space and kernel space) will

be fully ran- domized [14], [15]. In fact, Windows 7/8

already widely supports ASLR and the number of

applications that do not randomize their libraries is

steadily decreasing. Legacy libraries can also be forced to

be randomized using the Force ASLR feature.

2) If some kind of information leakage exists that discloses

memory addresses [16]–[18], an attacker can obtain the

virtual address of specific memory areas. She might use

this knowledge to infer additional information that helps

her to mount a control-flow hijacking attack. While such

information leaks are still available and often used in

exploits, we consider them to be software faults that will

be fixed to reduce the attack surface [19], [20].

3) An attacker might attempt to perform a brute-force at-

tack [21]. In fact, Shacham et al. showed that user mode

ASLR on 32-bit architectures only leaves 16 bit of random-

ness, which is not enough to defeat brute-force attacks.

However, such brute-force attacks are not applicable for

kernel space ASLR. More specifically, if an attacker wants

to exploit a vulnerability in kernel code, a wrong offset will

83

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

⊕

typically lead to a complete crash of the system and thus

an attacker has only one attempt to perform an exploit.

Thus, brute-force attacks against kernel mode ASLR are

not feasible in practice.

In combination with DEP, a technique that enforces the W X

(Writable xor eXecutable) property of memory pages, ASLR

significantly reduces the attack surface. Under the assumption

that the randomization itself cannot be predicted due to im-

plementation flaws (i.e., not fully randomizing the system or

existing information leaks), typical exploitation strategies are

severely thwarted.

In this paper, we study the limitations of kernel space ASLR

against a local attacker with restricted privileges. We introduce

a generic attack for systems running on the Intel Instruction

Set Architecture (ISA). More specifically, we show how a

local attacker with restricted rights can mount a timing-based

side channel attack against the memory management system to

deduce information about the privileged address space layout.

We take advantage of the fact that the memory hierarchy present

in computer systems leads to shared resources between user and

kernel space code that can be abused to construct a side channel.

In practice, timing attacks against a modern CPU are very

complicated due to the many performance optimizations used

by current processors such as hardware prefetching, speculative

execution, multi-core architectures, or branch prediction that

significantly complicate timing measurements [22]. Previous

work on side-channels attacks against CPUs [23]–[25] focused

on older processors without such optimization and we had

to overcome many challenges to solve the intrinsic problems

related to modern CPU features [22].

We have implemented three different attack strategies that
are capable of successfully reconstructing (parts of) the kernel

memory layout. We have tested these attacks on different Intel

and AMD CPUs (both 32- and 64-bit architectures) on machines

running either Windows 7 or Linux. Furthermore, we show that

our methodology also applies to virtual machines. As a result,

an adversary learns precise information about the (randomized)

memory layout of the kernel. With that knowledge, she is

enabled to perform control-flow hijacking attacks since she now

knows where to divert the control flow to, thus overcoming

the protection mechanisms introduced by kernel space ASLR.

Furthermore, we also discuss mitigation strategies and show

how the side channel we identified as part of this work can

be prevented in practice with negligible performance overhead.

In summary, the contributions of this paper are the following:

• We present a generic attack to derandomize kernel space

ASLR that relies on a side channel based on the memory

hierarchy present in computer systems, which leads to tim-

ing differences when accessing specific memory regions.

Our attack is applicable in scenarios where brute-force

attacks are not feasible and we assume that no implemen-

tation flaws exist for ASLR. Because of the general nature

of the approach, we expect that it can be applied to many

operating systems and a variety of hardware architectures.

• We present three different approaches to implement our

methodology. We successfully tested them against systems

running Windows 7 or Linux on both 32-bit and 64-bit

Intel and AMD CPUs, and also the virtualization software

VMware. As part of the implementation, we reverse-

engineered an undocumented hash function used in Intel

Sandybridge CPUs to distribute the cache among different

cores. Our attack enables a local user with restricted

privileges to determine the virtual memory address of key

kernel memory locations within a reasonable amount of

time, thus enabling ROP attacks against the kernel.

• We discuss several mitigation strategies that defeat our

attack. The runtime overhead of our preferred solution

is not noticeable in practice and successfully prevents

the timing side channel attacks discussed in this paper.

Furthermore, it can be easily adopted by OS vendors.

II. TECHNICAL BACKGROUND

We review the necessary technical background information

before introducing the methodology behind our attack.

A. Address Space Layout Randomization

As explained above, ASLR randomizes the system’s virtual

memory layout either every time a new code execution starts or

every time the system is booted [6]–[8], [26]. More specifically,

it randomizes the base address of important memory structures

such as for example the code, stack, and heap. As a result,

an adversary does not know the virtual address of relevant

memory locations needed to perform a control-flow hijacking

attack (i.e., the location of shellcode or ROP gadgets). All

major modern operating systems have implemented ASLR. For

example, Windows implements this technique since Vista in

both user and kernel space [12], Linux implements it with the

help of the PaX patches [7], and MacOS ships with ASLR

since version 10.5. Even mobile operating systems such as

Android [11] and iOS [13] perform this memory randomization

nowadays.

The security gain of the randomization is twofold: First,

it can protect against remote attacks, such as hardening a

networking daemon against exploitation. Second, it can also

protect against local attackers by randomizing the privileged

address space of the kernel. This should hinder exploitation

attempts of implementation flaws in kernel or driver code that

allow a local application to elevate its privileges, a prevalent

problem [27], [28]. Note that since a user mode application has

no means to directly access the kernel space, it cannot determine

the base addresses kernel modules are loaded to: every attempt

to access kernel space memory from user mode results in

an access violation, and thus kernel space ASLR effectively

hampers local exploits against the OS kernel or drivers.

Windows Kernel Space ASLR: In the following we describe

the kernel space ASLR implementation of Windows (both 32-

bit and 64-bit). The information presented here applies to Vista,

Windows 7, and Windows 8. We obtained this information by

84

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

∈ { } ∈ { }

∗

(1)

(2)

32 slots

32 slots

kernel region (6mb, 3 large pages) in the subroutine MiReserveDriverPtes. The process

works as follows: the kernel first reserves a memory region of

2 MB using standard 4 KB sized pages (a driver region). It

then randomly chooses one out of 64 page-aligned start slots

in this region where the first driver is loaded to. All subsequent

drivers are then appended, until the end of the 2 MB region is

hit, which is when the next driver is mapped to the beginning

of the region (i.e., a wrap-around occurs). In case a region is

full, a new 2MB driver region with a random start slot is
Figure 1. ASLR for Windows kernel region (not proportional). Slot and
load order (either (1) or (2)) are chosen randomly

reverse-engineering the corresponding parts of the operating

system code.

During the boot process, the Windows loader is responsible

for loading the two core components of the OS, the kernel

image and the hardware abstraction layer (HAL), which is

implemented as a separate module. At first, the Windows loader

allocates a sufficiently large address region (the kernel region)

for the kernel image and the HAL. The base address of this

region is constant for a given system. Then, it computes a

random number ranging from 0 to 31. This number is multiplied

by the page size (0x1000) and added to the base address

of the reserved region to form a randomized load address.

Furthermore, the order in which the kernel and the HAL are

loaded is also randomized. Both components are always loaded

consecutively in memory, there is no gap in between. This

effectively yields 64 different slots to which the kernel image

and the HAL each can be loaded (see also Figure 1). In

summary, the formula for computing the kernel base address

is as follows:

k base = kernel region + (r1 ∗ 0x1000) + (r2 ∗ hal size),

where r1 0 . . . 31 and r2 0, 1 are random numbers

within the given ranges. Kernel and HAL are commonly mapped

using so called large pages (2 MB) which improves performance

by reducing the duration of page walks; both components

usually require three large pages (= 6 MB). An interesting

observation is that the randomization is already applied to

the physical load addresses of the image and that for the

kernel region, the formula

virtual address = 0x80000000 + physical address

holds. The lower 31 bits of virtual kernel addresses are thus

identical to the physical address. Again, this is only true for

addresses in the kernel region and does not generally apply

to kernel space addresses. For the rest of the paper, note that

we assume that the system is started without the /3GB boot

option that restricts the kernelspace to 1 GB. In this case, the

kernelspace base address would be 0xC0000000 instead.

Once the kernel is initialized, all subsequent

drivers are loaded by the kernel’s driver load routine

MmLoadSystemImage. This mechanism contains a different

ASLR implementation to randomize the base address of drivers

allocated. For session-wide drivers such as win32k.sys, a

similar randomization with 64 slots for each driver image is

applied in a dedicated session driver region. We observed

that the loading order of drivers is always the same in practice.

B. Memory Hierarchy

There is a natural trade-off between the high costs of fast

computer memory and the demand for large (but inexpensive)

memory resources. Hence, modern computer systems are operat-

ing on hierarchical memory that is built from multiple stages of

different size and speed. Contemporary hierarchies range from

a few very fast CPU registers over different levels of cache to a

huge and rather slow main memory. Apparently, with increasing

distance to the CPU the memory gets slower, larger, and cheaper.

We focus on the different caches that are used to speed up

address translation and memory accesses for code and data.

As illustrated in Figure 2, each CPU core typically contains

one dedicated Level 1 (L1) and Level 2 (L2) cache and often

there is an additional Level 3 (L3) shared cache (also called

last level cache (LLC)). On level 1, instructions and data are

cached into distinct facilities (ICACHE and DCACHE), but on

higher stages unified caches are used. The efficiency of cache

usage is justified by the temporal and spatial locality property of

memory accesses [29]. Hence, not only single bytes are cached,

but always chunks of adjacent memory. The typical size of such

a cache line on x86/x64 is 64 bytes.

One essential question is where to store certain memory

content in the caches and how to locate it quickly on demand.

All described caches operate in an n-way set associative mode.

Here, all available slots are grouped into sets of the size n

and each memory chunk can be stored in all slots of one

particular set. This target set is determined by a bunch of

cache index bits that are taken from the memory address.

As an example, consider a 32-bit address and a typical L3

cache of 8 MB that is 16-way set associative. It consists of

(8, 192 1, 024)/64 = 131, 072 single slots that are grouped into

131, 072/16 = 8, 192 different sets. Hence, 13 bits are needed

to select the appropriate set. Since the lower 6 bits (starting with

bit 0) of each address are used to select one particular byte from

each cacheline, the bits 18 to 6 determine the set. The remaining

upper 13 bits form the address tag, that has to be stored with

each cache line for the later lookup.

One essential consequence of the set associativity is that

memory addresses with identical index bits compete against

the available slots of one set. Hence, memory accesses may

…

…
ntoskrnl HAL …

… HAL ntoskrnl …

…

85

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

evict and replace other memory content from the caches. One

common replacement strategy is Least Recently Used (LRU), in

which the entry which has not been accessed for the longest time

is replaced. Since managing real timestamps is not affordable in

practice, the variant Pseudo-LRU is used: an additional reference

bit is stored with each cacheline that is set on each access. Once

all reference bits of one set are enabled, they are all cleared

again. If an entry from a set has to be removed, an arbitrary

one with a cleared reference bit is chosen.

Virtual Memory and Address Translation: Contemporary

operating systems usually work on paged virtual memory in-

stead of physical memory. The memory space is divided into

equally sized pages that are either regular pages (e.g., with

a size of 4 KB), or large pages (e.g., 2 or 4 MB). When

accessing memory via virtual addresses (VA), they first have

to be translated into physical addresses (PA) by the processor’s

Memory Management Unit (MMU) in a page walk: the virtual

address is split into several parts and each part operates as an

array index for certain levels of page tables. The lowest level

of the involved paging structures (PS), the Page Table Entry

(PTE), contains the resulting physical frame number. For large

pages, one level less of PS is needed since a larger space of

memory requires less bits to address. In that case, the frame

number is stored one level higher in the Page Directory Entry

(PDE). In case of Physical Address Extension (PAE) [30] or

64-bit mode, additional PS levels are required, i.e. the Page

Directory Pointer (PDP) and the Page Map Level 4 (PML4)

structures. Appendix A provides more information and examples

of such address resolutions for PAE systems.

In order to speed up this address translation process, resolved

address mappings are cached in Translation Lookaside Buffers

(TLBs). Additionally, there often are dedicated caches for the

involved higher level PS [31]. Depending on the underlying

system, the implementation of these translation caches differs a

lot. Current x86/x64 systems usually have two different levels

of TLB: the first stage TLB0 is split into one for data (DTLB)

and another for instructions (ITLB), and the second stage TLB1

is used for both. Further, the TLBs are often split into one part

for regular pages and another for large pages.

Even with TLBs and PS caches, the address translation takes

some clock cycles, during which the resulting physical address

is not available yet. As an effect, the system has to wait for

the address translation before it can check the tag values of the

caches. Therefore, lower caches (mostly only the L1 cache) are

virtually indexed, but physically tagged. This means that the

cache index is taken from the virtual address but the stored

tag values from the physical one. With that approach, the

corresponding tag values already can be looked up and then

quickly compared once the physical address is available.

Figure 2 illustrates all the different caching facilities of the

Intel i7 processor. The vertical arrows are labeled with the

amount of clock cycles that are normally required to access the

particular stages [32], [33]. The dashed arrow (pointing from the

TLB1 to the DCACHE) indicates that PS are not only cached

Figure 2. Intel i7 memory hierarchy plus clock latency for the relevant stages
(based on [32], [33])

in the TLB or PML4/PDP/PDE caches, but may also reside as

regular data within the DCACHE or higher level unified caches.

An essential part of each virtual memory system is the page

fault handler (PFH). It is invoked if a virtual address cannot be

resolved, i.e., the page walk encounters invalid PS. This may

happen for several reasons (e.g., the addressed memory region

has been swapped out or the memory is accessed for the first

time after its allocation). In such cases, the error is handled

completely by the PFH. Although this happens transparently,

the process induces a slight time delay. Besides translation

information, the PS also contain several protection flags (e.g.,

to mark memory as non-executable or to restrict access to

privileged code only). After successful translation, these flags

are checked against the current system state and in case of a

protection violation, the PFH is invoked as well. In that case an

access violation exception is generated that has to be caught and

handled by the executing process. Again, a slight time delay may

be observable between accessing the memory and the exception

being delivered to the exception handler.

III. TIMING SIDE CHANNEL ATTACKS

Based on this background information, we can now explain

how time delays introduced by the memory hierarchy enable a

side channel attack against kernel-level ASLR.

A. Attacker Model

We focus in the following on local attacks against kernel

space ASLR: we assume an adversary who already has restricted

access to the system (i.e., she can run arbitrary applications) but

does not have access to privileged kernel components and thus

cannot execute privileged (kernel mode) code. We also assume

the presence of a user mode-exploitable vulnerability within

kernel or driver code, a common problem [27]. The exploitation

of this software fault requires to know (at least portions of)

the kernel space layout since the exploit at some point either

jumps to an attacker controlled location or writes to an attacker

controlled location to divert the control flow.

Since the entire virtual address space is divided in both user

and kernel space, an attacker might attempt to directly jump to a

Physica M mory

L3 Cache

L2 Cache

Unified TLB1

ICACHE DCACHE

ITITLLBB0

CPU MMU

IDTLTBLB0

PML4/PDP/
PDE Cache

>
1

0
0

3

5
1

0

4

1

6
>

 1
0

0

86

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

⊕

⊕

user space address from within kernel mode in an exploit, thus

circumventing any kernel space ASLR protections. However,

this is not always possible since the correct user space might

not be mapped at the time of exploitation due to the nature of the

vulnerability [14]. Furthermore, this kind of attack is rendered

impossible with the introduction of the Supervisor Mode Execu-

tion Protection (SMEP) feature of modern CPUs that disables

execution of user space addresses in kernel mode [34].

We also assume that the exploit uses ROP techniques due to

the W X property enforced in modern operating systems. This

requires to know a sufficiently large amount of executable code

in kernel space to enable ROP computations [10], [35]. Schwartz

et al. showed that ROP payloads can be built automatically

for 80% of Linux programs larger than 20 KB [36]. Further,

we assume that the system fully supports ASLR and that no

information leaks exist that can be exploited. Note that a variety

of information leaks exist for typical operating systems [18], but

these types of leaks stem from shortcomings and inconsequences

in the actual implementation of the specific OS. Developers can

fix these breaches by properly adjusting their implementation.

Recently, Giuffrida et al. [37] argued that kernel information

leakage vulnerabilities are hard to fix. While we agree that it is

not trivial to do so, we show that even in the absence of any

leak, we can still derandomize kernel space ASLR.

One of our attacks further requires that the userland process

either has access to certain APIs or gains information about

the physical frame mapping of at least one page in user space.

However, since this prerequisite holds only for one single attack

– which further turns out to be our least effective one – we do

not consider it in the general attacker model but explain its

details only in the corresponding Section IV-A.

In summary, we assume that the system correctly implements

ASLR (i.e., the complete system is randomized and no infor-

mation leaks exist) and that it enforces the W X property.

Hence, all typical exploitation strategies are thwarted by the

implemented defense mechanisms.

B. General Approach

In this paper, we present generic side channels against proces-

sors for the Intel ISA that enable a restricted attacker to deduce

information about the privileged address space by timing certain

operations. Such side channels emerge from intricacies of the

underlying hardware and the fact that parts of the hardware

(such as caches and physical memory) are shared between both

privileged and non-privileged code. Note that all the approaches

that we present in this paper are independent of the underlying

operating system: while we tested our approach mainly on

Windows 7 and Linux, we are confident that the attacks also

apply for other versions of Windows or even other operating

systems. Furthermore, our attacks work on both 32- and 64-bit

systems.

The methodology behind our timing measurements can be

generalized in the following way: At first, we attempt to set the

system in a specific state from user mode. Then we measure the

duration of a certain memory access operation. The time span of

this operation then (possibly) reveals certain information about

the kernel space layout. Our timing side channel attacks can be

split into two categories:

• L1/L2/L3-based Tests: These tests focus on the L1/L2/L3

CPU caches and the time needed for fetching data and code

from memory.

• TLB-based Tests: These tests focus on TLB and PS caches

and the time needed for address translation.

To illustrate the approach, consider the following example: we

make sure that a privileged code portion (such as the operating

system’s system call handler) is present within the caches by

executing a system call. Then, we access a designated set of

user space addresses and execute the system call again. If the

system call takes longer than expected, then the access of user

space addresses has evicted the system call handler code from

the caches. Due to the structure of modern CPU caches, this

reveals parts of the physical (and possibly virtual) address of

the system call handler code as we show in our experiments.

Accessing Privileged Memory: As explained in Sec-

tion II-B, different caching mechanisms determine the duration

of a memory access:

• The TLB and PS caches speed up the translation from the

virtual to the physical address.

• In case no TLB exists, the PS entries of the memory

address must be fetched during the page walk. If any of

these entries are present in the normal L1/L2/L3 caches,

then the page walk is accelerated in a significant (i.e.,

measurable) way.

• After the address translation, the actual memory access is

faster if the target data/code can be fetched from the L1/-

L2/L3 caches rather than from the RAM.

While it is impossible to access kernel space memory directly

from user mode, the nature of the cache facilities still enables

an attacker to indirectly measure certain side-effects. More

precisely, she can directly access a kernel space address from

user mode and measure the duration of the induced exception.

The page fault will be faster if a TLB entry for the correspond-

ing page was present. Additionally, even if a permission error

occurs, this still allows to launch address translations and, hence,

generate valid TLB entries by accessing privileged kernel space

memory from user mode.

Further, an attacker can (to a certain degree) control which

code or data regions are accessed in kernel mode by forcing

fixed execution paths and known data access patterns in the

kernel. For example, user mode code can perform a system call

(sysenter) or an interrupt (int). This will force the CPU

to cache the associated handler code and data structures (e.g.,

IDT table) as well as data accessed by the handler code (e.g.,

system call table). A similar effect can be achieved to cache

driver code and data by indirectly invoking driver routines from

user mode.

Note that the x86/x64 instruction set also contains a num-

ber of instructions for explicit cache control (e.g., invlpg,

87

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

Method Requirements Results Environment Success

Cache Probing

Double Page Fault
Cache Preloading

large pages or PA of eviction buffer, partial informa-
tion about kernel region location
none
none

ntoskrnl.exe and hal.sys

allocation map, several drivers
win32k.sys

all

all but AMD
all

C

C
C

Table I
SUMMARY OF TIMING SIDE CHANNEL ATTACKS AGAINST KERNEL SPACE ASLR ON WINDOWS.

invd/wbinvd, clflush, or prefetch) [30]. However,

these instructions are either privileged and thus cannot be called

from user mode, or they cannot be used with kernel space

addresses from user mode. Hence, none of these instructions

can be used for our purposes. As a result, we must rely on

indirect methods as explained in the previous paragraphs.

C. Handling Noise

While performing our timing measurements we have to deal

with different kinds of noise that diminish the quality of our

data if not addressed properly. Some of this noise is caused by

the architectural peculiarities of modern CPUs [22]: to reach

a high parallelism and work load, CPU developers came up

with many different performance optimizations like hardware

prefetching, speculative execution, multi-core architectures, or

branch prediction. We have adapted our measuring code to take

the effects of these optimizations into account. For example,

we do not test the memory in consecutive order to avoid

being influenced by memory prefetching. Instead, we use access

patterns that are not influenced by these mechanisms at all.

Furthermore, we have to deal with the fact that our tool is not

the only running process and there may be a high CPU load

in the observed system. The thread scheduler of the underlying

operating system periodically and, if required, also preemptively

interrupts our code and switches the execution context. If we

are further running inside a virtual machine, there is even

more context switching when a transition between the virtual

machine monitor and the VM (or between different VMs) takes

place. Finally, since all executed code is operating on the same

hardware, also the caches have to be shared to some extent.

As mentioned above, our approach is based on two key opera-

tions: (a) set the system into a specific state and (b) measure the

duration of a certain memory access operation. Further, these

two operations are performed for each single memory address

that is probed. Finally, the complete experiment is repeated

multiple times until consistent values have been collected. While

it is now possible — and highly probable — that our code is

interrupted many times while probing the complete memory, it

is also very likely that the low-level two step test operations can

be executed without interruption. The mean duration of these

two steps depends on the testing method we perform, but even

in the worst case it takes no more than 5,000 clock cycles.

Since modern operating systems have time slices of at least

several milliseconds [38], [39], it is highly unlikely that the

scheduler interferes with our measurements. Accordingly, while

there may be much noise due to permanent interruption of our

experiments, after a few iterations we will eventually be able

to test each single memory address without interruption. This

is sufficient since we only need minimal measurement values,

i.e., we only need one measurement without interruption.

IV. IMPLEMENTATION AND RESULTS

We now describe three different implementations of timing

side channel attacks that can be applied independently from

each other. The goal of each attack is to precisely locate some

of the currently loaded kernel modules from user mode by

measuring the time needed for certain memory accesses. Note

that an attacker can already perform a ROP-based attack once

she has derandomized the location of a few kernel modules or

the kernel [35], [36].

Depending on the randomness created by the underlying

ASLR implementation, the first attack might still require partial

information on the location for the kernel area. For the Windows

ASLR implementation (see Section II-A), this is not the case

since only 64 slots are possible of the kernel. The first attack

requires either the presence of two large pages or the knowledge

of the physical address of a single page in user space. Our

second attack has no requirements. However, due to the way

the AMD CPU that we used during testing behaves in certain

situations, this attack could not be mounted on this specific

CPU. The third attack has no requirements at all.

We have evaluated our implementation on the 32-bit and 64-

bit versions of Windows 7 Enterprise and Ubuntu Desktop 11.10

on the following (native and virtual) hardware architectures

to ensure that they are commonly applicable on a variety of

platforms:

1) Intel i7-870 (Nehalem/Bloomfield, Quad-Core)

2) Intel i7-950 (Nehalem/Lynnfield, Quad-Core)

3) Intel i7-2600 (Sandybridge, Quad-Core)

4) AMD Athlon II X3 455 (Triple-Core)

5) VMWare Player 4.0.2 on Intel i7-870 (with VT-x)

Table I provides a high-level overview of our methods, their

requirements, and the obtained results. We implemented an

exploit for each of the three attacks.

For the sake of simplicity, all numbers presented in the re-

mainder of this section were taken using Windows 7 Enterprise

32-bit. Note that we also performed these tests on Windows 7

64-bit and Ubuntu Desktop (32-bit and 64-bit) and can confirm

that they work likewise. The Ubuntu version we used did not

employ kernel space ASLR yet, but we were able to determine

the location of the kernel image from user space. In general,

88

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

{ }

{ } → { }

this does not make any difference since the attacks also would

have worked in the presence of kernel space ASLR.

In the following subsections, we explain the attacks and

discuss our evaluation results.

A. First Attack: Cache Probing

Our first method is based on the fact that multiple memory

addresses have to be mapped into the same cache set and,

thus, compete for available slots. This can be utilized to infer

(parts of) virtual or physical addresses indirectly by trying

to evict them from the caches in a controlled manner. More

specifically, our method is based on the following steps: first, the

searched code or data is loaded into the cache indirectly (e.g.,

by issuing an interrupt or calling sysenter). Then certain

parts of the cache are consecutively replaced by accessing

corresponding addresses from a user-controlled eviction buffer,

for which the addresses are known. After each replacement,

the access time to the searched kernel address is measured, for

example by issuing the system call again. Once the measured

time is significantly higher, one can be sure that the previously

accessed eviction addresses were mapped into the same cache

set. Since the addresses of these colliding locations are known,

the corresponding cache index can be obtained and obviously

this is also a part of the searched address.

Several obstacles have to be addressed when performing

these timing measurements in practice. First, the correct kind

of memory access has to be performed: higher cache levels are

unified (i.e., there are no separate data and instruction caches),

but on lower levels either a memory read/write access or an

execution has to be used in order to affect the correct cache

type. Second, accessing the colliding addresses only once is not

enough. Due to the Pseudo-LRU algorithm it may happen that

not the searched address is evicted, but one from the eviction

buffer. Therefore, it is necessary to access each of the colliding

addresses twice. Note that it is still possible that code within

another thread or on other CPUs concurrently accesses the

search address in the meantime, setting its reference bit that way.

To overcome this problem, all tests have to be performed several

times to reduce the influence of potential measuring errors and

concurrency.

More serious problems arise due to the fact that the cache

indexes on higher levels are taken from the physical instead of

the virtual addresses. In our experiments, the eviction buffer is

allocated from user mode and, hence, only its virtual address is

known. While it is still possible to locate the colliding cacheset,

no information can be gathered about the corresponding physical

addresses. In general, even if the physical address of the

searched kernel location is known, this offers no knowledge

about its corresponding virtual address. However, the relevant

parts of the virtual and physical address are identical for the

kernel region of Windows (see Section II-A). Hence, all the

relevant bits of the virtual address can be obtained from the

physical address.

Cache probing with the latest Intel CPUs based on the

Sandybridge [30] architecture is significantly harder, even if

the attacker has a contiguous region of memory for which all

corresponding physical addresses are known. These processors

employ a distributed last level cache [30] that is split into

equally sized cache slices and each of them is dedicated to

one CPU core. This approach increases the access bandwidth

since several L3 cache accesses can be performed in parallel. In

order to uniformly distribute the accesses to all different cache

slices, a hash function is used that is not publicly documented.

We thus had to reconstruct this hash function in a black-box

manner before cache probing can be performed, since otherwise

it is unknown which (physical) addresses are mapped into which

cache location. We explain our reverse-engineering approach

and the results in a side note before explaining the actual

evaluation results for our first attack.

1) Side Note: Sandybridge Hash Function: In order to re-

construct the Sandybridge hash function, we utilized the Intel

i7-2600 processor. This CPU has an 8 MB L3 cache and 4 cores,

resulting in 2 MB L3 slices each. Hence, the hash function has

to decide between 4 different slices (i.e., resulting in 2 output

bits). Since our testing hardware had 4 GB of physical memory,

we have reconstructed the hash function for an input of 32 bits.

In case of larger physical memory, the same method can be

applied to reverse the influence of the upper bits as well.

We started with the reasonable assumption that L3 cachelines

on this CPU still consist of 64 bytes. Hence, the lowest

6 bits of each address operate as an offset and, therefore, do

not contribute as input to the hash function. Accordingly, we

assumed a function h : 0, 1 32−6 0, 1 2.

In order to learn the relationship between the physical ad-

dresses and the resulting cache slices, we took one arbitrary

memory location and an additional eviction buffer of 8 MB

and tried to determine the colliding addresses within (i.e., those

which are mapped into the same cacheset of the same cache

slice). Since the L3 cache operates on physical addresses, the

eviction buffer had to be contiguous. Therefore, we used our

own custom driver for this experiment.

Performance optimization features of modern CPUs like hard-

ware prefetching, speculative execution, and branch prediction

make it impossible to directly identify single colliding ad-

dresses. Therefore, we performed a two-step experiment: (1) we

identified eviction buffer regions of adjacent memory addresses

that collide with the probe address and then (2) we located

the particular colliding addresses within these regions. We

have performed these tests several hundred times with different

physical addresses in order to gain variety in the test data. As a

result of each single test we got a tuple (p, CA = ca1, ca2, ...)

whereas p is the used probe address and each cai is a colliding

address from our eviction buffer. By manually comparing those

tuples (p, CA) and (p’, CA’) with a hamming distance of one

between p and p’, we were able to learn the influence of

particular bits on the colliding addresses from CA and CA’.

In the end we were able to fully reconstruct the hashing

function h that decides which cache slice is used for a given

89

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

= =

PA

h1 =

h2 =

Input to hash function for slice index

h = (h1, h2)

Cache index Block offset evict the syscall handler code from the cache. Step 3 measures

if the eviction was successful. If we hit the correct set i, then

the second sysenter takes considerably longer and from i
we can deduce the lower parts of the physical address of the

syscall handler. Along with the address of the kernel region,
h1 = b31 ⊕ b30 ⊕ b29 ⊕ b27 ⊕ b25 ⊕ b23 ⊕ b21 ⊕ b19 ⊕ b18

h2 = b31 ⊕ b29 ⊕ b28 ⊕ b26 ⊕ b24 ⊕ b23 ⊕ b22 ⊕ b21 ⊕ b20 ⊕ b19 ⊕ b17

Figure 3. Results for the reconstruction of the undocumented Sandybridge
hash function

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

this yields the complete virtual address of the syscall handler,

and thus the base of the entire kernel and the HAL.

We performed extensive tests on the machine powered by

an Intel i7-870 (Bloomfield) processor. We executed the cache

probing attack 180 times; the machine was rebooted after each

test and we waited for a random amount of time before the
Kernel Base VA kernel_region base address randomized zero measurements took place to let the system create artificial noise.

Kernel PA/VA

PA

tag

identical for virtual and physical address (in kernel_region)

L3 cache index

cacheline

Figure 5 shows the cache probing measurements. The x-axis

consists of the different L3 cache sets (8, 192 in total) and

Figure 4. Correlation of different memory addresses

address. It turned out that only the bits 31 to 17 are considered

as input values. Each cache slice operates as a separate smaller

2 MB cache, whereas the address bits 16 to 6 constitute as the

cache index (11 bits are necessary to address all sets of such

a 2 MB cache). Figure 3 shows how the 32 bits of a physical

address are used as inputs to the hash function, cache index,

and block offset.

2) Evaluation Results: We evaluated cache probing on all

of our testing machines. We assume that the base address of

the kernel region (see kernel base from Section II-A) is

known. This is a reasonable assumption in practice since this

information can be reliably extracted using the method presented

in Section IV-B. In Windows this address actually is constant

for a particular system.

Figure 4 shows the correlation of the different parts of

the virtual and physical address inside the kernel region.

In essence, bits 16 to 12 of the kernel’s base address are

randomized in Windows’ ASLR implementation and must be

known by an attacker. Since the PA and VA for bits 30 to 0 are

identical in the kernel region, it is also sufficient to know bits

16 to 12 of the physical address. This bit range overlaps with

the L3 cache index. In other words: if the L3 cache index is

known, then an attacker can tell the virtual base address of the

kernel.

We used cache probing to extract parts of the physical address

of the system call handler KiFastCallEntry. The offset

from this function to the kernel’s base address is static and

known. If we know the address of this function, then we also

know the base address of the kernel (and HAL).

We performed the following steps for all cache sets i:

1) Execute sysenter with an unused syscall number.

2) Evict cache set i using the eviction buffer.

3) Execute sysenter again and measure the duration.

The unused syscall number minimizes the amount of executed

kernel mode code since it causes the syscall handler to imme-

diately return to user mode with an error. Step 1 makes sure

that the syscall handler is present in the caches. Step 2 tries to

the y-axis is the duration of the second system call handler

invocation in CPU clocks, after the corresponding cache set

was evicted. The vertical dashed line indicates the correct value

where the system call handler code resides. There is a clear

cluster of high values at this dashed line, which can be used to

extract the correct cache set index and thus parts of the physical

(and possibly virtual) address. We were able to successfully

determine the correct syscall handler address in each run and

there were no false positives. The test is fast and generally takes

less than one second to finish.

3) Discussion: For successful cache probing attacks, an

adversary needs to know the physical addresses of the eviction

buffer, at least those bits that specify the cache set. Furthermore,

she somehow has to find out the corresponding virtual address

of the kernel module from its physical one. This problem is

currently solved by using large pages for the buffer, since

under Windows those always have the lowest bits set to 0.

Therefore, their first byte always has a cache index of 0 and

all following ones can be calculated from that. However, this

method does not work with Sandybridge processors, since there

we need to know the complete physical address as input to the

hash function that decides on which cache slice an address is

mapped. Furthermore, allocating large pages requires a special

right under Windows (MEM_LARGE_PAGES), which first has

Figure 5. Cache probing results for Intel i7-870 (Bloomfield)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

90

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

to be acquired somehow. One possible way to overcome this

problem is to exploit an application that already possesses this

right.

In case of non-Sandybridge processors, large pages are not

needed per se. It is only necessary to know the physical start

address of the eviction buffer. More generically, it is only

necessary to know parts of the physical base address of one

user space address, since this can then be used to align the

eviction buffer. Our experiments have shown that these parts of

the physical base address of the common module ntdll, which

is always mapped to user space, is always constant (even after

reboots). Though the concrete address varies depending on the

hardware and loaded drivers and is thus difficult to compute,

the value is deterministic.

B. Second Attack: Double Page Fault

The second attack allows us to reconstruct the allocation of

the entire kernel space from user mode. To achieve this goal,

we take advantage of the behavior of the TLB cache. When we

refer to an allocated page, we mean a page that can be accessed

without producing an address translation failure in the MMU;

this also implies that the page must not be paged-out.

The TLB typically works in the following way: whenever

a memory access results in a successful page walk due to a

TLB miss, the MMU replaces an existing TLB entry with the

translation result. Accesses to non-allocated virtual pages (i.e.,

the present bit in the PDE or PTE is set to zero) induce a page

fault and the MMU does not create a TLB entry. However, when

the page translation was successful, but the access permission

check fails (e.g., when kernel space is accessed from user mode),

a TLB entry is indeed created. Note that we observed this

behavior only on Intel CPUs and within the virtual machine.

In contrast, the AMD test machine acted differently and never

created a TLB entry in the mentioned case. The double page

fault method can thus not be applied on our AMD CPU.

The behavior on Intel CPUs can be exploited to reconstruct

the entire kernel space from user mode as follows: for each

kernel space page p, we first access p from user mode. This

results in a page fault that is handled by the operating system

and forwarded to the exception handler of the process. One of

the following two cases can arise:

• p refers to an allocated page: since the translation is

successful, the MMU creates a TLB entry for p although

the succeeding permission check fails.

• p refers to an unallocated page: since the translation fails,

the MMU does not create a TLB entry for p.

Directly after the first page fault, we access p again and

measure the time duration until this second page fault is

delivered to the process’s exception handler. Consequently, if

p refers to an allocated kernel page, then the page fault will be

delivered faster due to the inherent TLB hit.

Due to the many performance optimizations of modern CPUs

and the concurrency related to multiple cores, a single measure-

ment can contain noise and outliers. We thus probe the kernel

space multiple times and only use the observed minimal access

time for each page to reduce measurement inaccuracies. Figure 6

shows measurement results on an Intel i7-950 (Lynnfield) CPU

for eight measurements, which we found empirically to yield

precise results. The dots show the minimal value (in CPU

clocks) observed on eight runs. The line at the bottom indicates

which pages are actually allocated in kernel space; a black bar

means the page is allocated. As one can see, there is a clear

correlation between the timing values and the allocation that

allows us to infer the kernel memory space.

We developed an algorithm that reconstructs the allocation

from the timing values. In the simplest case, we can introduce

a threshold value that differentiates allocated from unallocated

pages. In the above example, we can classify all timing val-

ues below 5, 005 clocks as allocated and all other values as

unallocated as indicated by the dashed line. This yields a high

percentage of correct classifications. Depending on the actual

CPU model, this approach might induce insufficient results due

to inevitable overlap of timing values and thus other recon-

struction algorithms are necessary. We implemented a second

approach that aims at detecting transitions from allocated to

unallocated memory by looking at the pitch of the timing curve,

a straightforward implementation of a change point detection

(CPD) algorithm [40]. Further measurement results and figures

displaying the results are shown in Appendix B.

1) Evaluation Results: We evaluated our double page fault

based approach on the three Intel CPUs and the virtual machine,

Table 2 shows a summary of the results. We employed the

threshold algorithm on CPU (1) and the CPD algorithm on

platforms (2)–(4). The numbers shown in the table are the

average out of ten runs for each machine. Between each run, we

rebooted the operating system to make sure that the kernel space

allocation varies. We took a snapshot of the allocation with the

help of a custom driver before we started the measurements to

obtain a ground truth of the memory layout. Since the allocation

might change while the measurements are running, the correct-

Figure 6. Example of double page fault measurements for an Intel i7-950
(Lynnfield) CPU

91

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

CPU model Correctness Runtime
(1) i7-870 (Bloomfield) 96.42% 17.27 sec (8 it.)
(2) i7-950 (Lynnfield) 99.69% 18.36 sec (8 it.)
(3) i7-2600 (Sandybr.) 94.92% 65.41 sec (32 it.)

(4) VMware on (1) 94.98% 72.93 sec (32 it.)

Table II
RESULTS FOR DOUBLE PAGE FAULT TIMINGS

ness slightly decreases because of this effect. Nevertheless, we

were able to successfully reconstruct the state of at least 94.92%

of all pages in the kernel space on each machine. With the

help of memory allocation signatures (a concept we introduce

next) such a precision is easily enough to exactly reconstruct

the location of many kernel components.

The average runtime of the measurements varies between 18

and 73 seconds and is therefore within reasonable bounds. One

iteration is one probe of the entire kernel space with one access

per page. As noted above, we empirically found that more than

eight iterations on Nehalem CPUs do not produce better results.

For Sandybridge and VMware, more iterations yielded more

precise results, mainly due to the fact that there was more noise

in the timings.

2) Memory Allocation Signatures: The double page fault

timings yield an estimation for the allocation map of the kernel

space, but do not determine at which concrete base addresses

the kernel and drivers are loaded to. However, the allocation

map can be used, for example, to spot the kernel region (i.e.,

the memory area in which the kernel and HAL are loaded) due

to the large size of this region, which can be detected easily.

One could argue that, since the virtual size of each driver is

known, one could find driver load addresses by searching for

allocated regions which are exactly as big as the driver image.

This does not work for two reasons: first, Windows kernel space

ASLR appends most drivers in specific memory regions and thus

there is usually no gap between two drivers (see Section II-A).

Second, there are gaps of unallocated pages inside the driver

images as we explain next.

In contrast to the kernel region, Windows drivers are not
mapped using large pages but using the standard 4 KB page

granularity. Code and data regions of drivers are unpageable

by default. However, it is possible for developers to mark

certain sections inside the driver as pageable to reduce the

memory usage of the driver. Furthermore, drivers typically have

a discardable INIT section, that contains the initialization code

of the driver which only needs to be executed once. All code

pages in the INIT section are freed by Windows after the driver

is initialized. Code or data in pageable sections that are never or

rarely used are likely to be unallocated most of the time. Along

with the size and location of the INIT section, this creates

a memory allocation signature for each driver in the system.

We can search for these signatures in the reconstructed kernel

space allocation map to determine the actual load addresses of

a variety of drivers.

We evaluated the signature matching on all three Intel CPUs

Table III

EVALUATION OF ALLOCATION SIGNATURE MATCHING

and the virtual machine. At first, we took a snapshot of

the kernel space with the help of a custom driver. Then we

created signatures for each loaded driver. A signature essentially

consists of a vector of boolean values that tell whether a page

in the driver was allocated (true) or paged-out (false). Note that

this signature generation step can be done by an attacker in

advance to build a database of memory allocation signatures.

In the next step, we rebooted the machine, applied the double

page fault approach, and then matched the signatures against

the reconstructed kernel space allocation map. To enhance the

precision during the signature matching phase, we performed

two optimizations: first, we rule out signatures that contain less

than five transitions from allocated to paged-out memory to

avoid false positives. Second, we require a match of at least

96% for a signature, which we empirically found to yield the

best results.

The results are shown in Table 3. On machine (1), the

signature matching returns the exact load addresses of 21 drivers

(including big common drivers such as win32k.sys and

ndis.sys); 141 drivers are loaded in total and 119 signatures

were ruled out because they held too few transitions. Hence

only one signature had a too low match ratio. All identified

base addresses are correct, there are no false positives. Most of

the other drivers could not be located since they are too small

and their signatures thus might produce false positives. The 21

located drivers hold 7, 431 KB of code, which is easily enough

to mount a full ROP attack as explained previously [35], [36].

Similar results hold for the other CPUs.

To assess whether the signatures are also portable across

different CPUs, we took the signatures generated on machine

(2) and applied them to machine (1). The operating system and

driver versions of both machines are identical. This yields 9 hits

with 2, 312 KB of code. This experiment shows that the different

paging behavior in drivers is not fundamentally affected by

differing hardware configurations.

3) Discussion: Although the double page fault measurements

only reveal which pages are allocated and which are not, this

still can be used to derive precise base addresses as we have

shown by using the memory allocation signature matching.

Furthermore, the method can be used to find large page regions

(especially the kernel region).

C. Third Attack: Address Translation Cache Preloading

In the previous section we have described an approach to

reconstruct the allocation map of the complete kernel space.

CPU model Matches Code size
(1) i7-870 (Bloomfield) 21 7,431 KB
(2) i7-950 (Lynnfield) 9 4,184 KB
(3) i7-2600 (Sandybridge) 5 1,696 KB
(4) VMware on (1) 18 7,079 KB

(1) with signatures of (2) 9 2,312 KB

92

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

While it is often possible to infer the location of certain drivers

from that, without driver signatures it only offers information

about the fact that there is something located at a certain

memory address and not what. However, if we want to locate a

certain driver (i.e., obtain the virtual address of some piece of

code or data from its loaded image), we can achieve this with

our third implementation approach: first we flush all caches (i.e.,

address translation and instruction/data caches) to start with a

clean state. After that, we preload the address translation caches

by indirectly calling into kernel code, for example by issuing a

sysenter operation. Finally, we intentionally generate a page

fault by jumping to some kernel space address and measure the

time that elapses between the jump and the return of the page

fault handler. If the faulting address lies in the same memory

range as the preloaded kernel memory, a shorter time will elapse

due to the already cached address translation information.

Flushing all caches from user mode cannot be done directly

since the invlpg and invd/wbinvd are privileged instruc-

tions. Thus, this has to be done indirectly by accessing suffi-

300

250

200

150

100

50

0

0x9624e3c0 0x962c84e0 0x96342600 0x963bc720 0x96436840

virtual address

Figure 7. Extract of cache preloading measurements

ciently many memory addresses to evict all other data from the

cache facilities. This is trivial for flushing the address translation

and L1 caches, since only a sufficient number of virtual memory

addresses have to be accessed. However, this approach is not

suitable for L2/L3 caches, since these are physically indexed

and we do not have any information about physical addresses

from user mode. Anyway, in practice the same approach as

described above works if the eviction buffer is chosen large

enough. We have verified for Windows operating systems that

large parts of the physical address bits of consecutively allocated

pages are in successive order as well. Presumably this is done

for performance reasons to optimally distribute the data over the

caches and increase the effectiveness of the hardware prefetcher.

As our experiments have shown, even on Sandybrige CPUs one

virtually consecutive memory buffer with a size twice as large

as the L3 cache is sufficient to completely flush it.

During our experiments we tried to locate certain system

service handler functions within win32k.sys. To avoid cache

pollution and obtain the best measuring results, we chose the

system service bInitRedirDev, since it only executes 4

bytes of code before returning. As a side effect, we also

located the System Service Dispatch/Parameter Tables (SSDT

and SSPT) within that module, since these tables are accessed

internally on each service call.

In our implementation we first allocated a 16 MB eviction

buffer and filled it with RET instructions. Then for each page

p of the complete kernel space memory (or a set of selected

candidate regions), we performed three steps:

1) Flush all (address translation-, code- and unified) caches by

calling into each cacheline (each 64th byte) of the eviction

buffer.

2) Perform sysenter to preload address translation caches.

3) Call into some arbitrary address of page p and measure

time until page fault handler returns.

1) Evaluation Results: The steps described above have to

be repeated several times to diminish the effects of noise and

measuring inaccuracies. It turned out that the necessary amount

of iterations strongly depends on the underlying hardware.

Empirically we determined that around 100 iterations are needed

on Nehalem, 60 on AMD, and only 30 on Sandybridge to

reliably produce precise results. Inside the virtual machine, we

had to further increase the number of iterations due to the noise

that was generated by the virtual machine monitor. Nevertheless,

by increasing it to 100 (the VM operated on the Sandybridge

processor) this timing technique also worked successfully inside

a virtualized environment.

We learned that the noise could be additionally reduced by

taking different addresses randomly from each probed page for

each iteration. In addition, we found out that using relative

time differences was less error-prone than using absolute values.

Therefore, we enhanced our testing procedure by performing

the measuring twice for each page: the first time like shown

above and the second time without performing the syscall in

between. By calculating the relative time difference between

both timing values, we were able to measure the speedup of

address translation caches for our particular scenario. Figure 7

shows an extract of our measuring results for the Intel i7-950

(Lynnfield) CPU. The x-axis displays the probed virtual address,

while the y-axis displays the relative time difference in clock

cycles. The two vertical lines indicate those locations where the

searched system service handler function resp. the SSDT/SSPT

were located. As one can easily see those memory regions have

much higher timing difference values than the others. Though

there was a lot of noise within the data, our algorithms were

able to locate those regions correctly on all of our testing

environments.

While this method only reveals the memory page of the

searched kernel module, it is still possible to reconstruct its

c
lo

c
k
s

93

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

full virtual address. This can be achieved by obtaining the

relative address offset of the probed code/data by inspecting the

image file of the module. As the measuring operates on a page

granularity, it is best suited to locate kernel modules that reside

in regular pages. Nevertheless, with the described difference

technique, also large page memory regions can be identified

that contain certain code or data. Obviously, the exact byte

locations within such regions cannot be resolved and, therefore,

we have used it to locate win32k.sys in our experiments.

Due to its size, this module is sufficient to perform arbitrary

ROP attacks [35], [36].

2) Discussion: Our third proposed method has no remarkable

limitations. However, depending on the size of the probed

memory range and the amount of necessary test iterations, it

may take some time to complete. The probing of a 3 MB region

(this is the size of win32k.sys) for one iteration takes around

27 seconds. Therefore, if an attacker has employed the double

page fault method to identify an appropriate candidate region

and then performs 30 iterations on a Sandybridge processor, it

takes 13 minutes to perform the complete attack. However, since

the relative offset of the searched kernel function can previously

be obtained from the image file, the probed memory region can

be reduced drastically, enabling to perform the test in a minute

or less. If the location of candidate regions is not possible, our

attack will still work but take longer time. Furthermore, the

technique operates on page granularity. Hence, drivers residing

in large pages can be located, but their exact byte offset cannot

be identified without additional techniques.

V. MITIGATION APPROACHES

Since the methods presented in the previous section can

be used to break current ASLR implementations, mitigation

strategies against our attacks are necessary. To that end, there

are several options for CPU designers and OS vendors.

The root cause of our attacks is the concurrent usage of the

same caching facilities by privileged and non-privileged code

and data, i.e., the memory hierarchy is a shared resource. One

solution to overcome this problem would be to split all caches

and maintain isolated parts for user and kernel mode, respec-

tively. Obviously, this imposes several performance drawbacks

since additional checks had to be performed in several places

and the maximum cache size would be cut in half for both

separate caches (or the costs increase).

A related mitigation attempt is to forbid user mode code

to resolve kernel mode addresses. One way to achieve this is

to modify the global descriptor table (GDT), setting a limit

value such that the segments used in non-privileged mode

only span the user space. However, doing so would render

some CPU optimization techniques useless that apply when

the flat memory model is used (in which all segments span

the complete memory). Furthermore, the complete disabling

of segmentation on 64-bit architectures makes this mitigation

impossible. Another option would be to suppress the creation

of TLB entries on successful address translation if an access

violation happens, like it is done with the tested AMD CPU.

Nevertheless, the indirect loading of kernel code, data, or

address mappings through system calls still cannot be avoided

with this method.

Current ASLR implementations (at least under Windows) do

not fully randomize the address space, but randomly choose

from 64 different memory slots. By utilizing the complete mem-

ory range and distributing all loaded modules to different places,

it would be much harder to perform our attacks. Especially

when dealing with a 64-bit memory layout, the time needed

for measuring is several magnitudes higher and would increase

the time needed to perform some of our attacks. Nevertheless,

scattering allocated memory over the full address range would

significantly degrade system performance since much more

paging structures would be needed and spatial locality would

be destroyed to a large extent. Furthermore, we expect that our

double page fault attack even then remains practical. Due to the

huge discrepancy between the 64-bit address space and the used

physical memory, the page tables are very sparse (especially

those one higher levels). Since page faults can be used to

measure the depth of the valid page tables for a particular

memory address, only a very small part of the complete address

space actually has to be probed.

We have proposed a method to identify mapped kernel

modules by comparing their memory allocation patterns to a

set of known signatures. This is possible because parts of these

modules are marked pageable or discardable. If no code or data

could be paged-out (or even deallocated) after loading a driver, it

would be impossible to detect them with our signature approach.

Again, applying this protection would decrease the performance,

because unpageable memory is a scarce and critical system

resource.

One effective mitigation technique is to modify the execution

time of the page fault handler: if there is no correlation between

the current allocation state of a faulting memory address and the

observable time for handling that, the timing side channel for

address translation vanishes. This would hinder our attacks from

Sections IV-B and IV-C. We have implemented one possible

implementation for this method and verified that our measuring

no longer works. To that end, we have hooked the page fault

handler and normalized its execution time if unprivileged code

raises a memory access violation on kernel memory. In that case

we enforce the execution to always return back to user mode

after a constant amount of clock cycles. For that purpose we

perform a bunch of timing tests in advance to measure the timing

differences for memory accesses to unallocated and allocated

(for both regular and large) pages. Inside the hooked page fault

handler we delay execution for the appropriate amount of time,

depending on the type of memory that caused the exception.

Since this happens only for software errors – or due to active

probing – there is no general impact on system performance.

Note that modifying the page fault handler renders our attack

infeasible, but there might be other side channels an attacker can

exploit to learn more about the memory layout of the kernel.

94

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

Even with normalizing the page fault handling time, our cache

probing attack remains feasible. However, cache probing has

one fundamental shortcoming: it only reveals information about

physical addresses. If the kernel space randomization is only

applied to virtual addresses, then knowing physical addresses

does not help in defeating ASLR.

The kernel (or an underlying hypervisor) may also try to

detect suspicious access patterns from usermode to kernelspace,

for example by limiting the amount of usermode page faults

for kernel space addresses. Such accesses are necessary for

two of the previously described methods. While our current

implementations of these attacks could be detected without

much effort that way, we can introduce artificial sleep times

and random access patterns to mimicry benign behavior. In the

end, this would lead to an increased runtime of the exploits.

In case the attacks are mounted from within a VMM, the hy-

pervisor might also provide the VM with incorrect information

on the true CPU model and features, for example by modifying

the cpuid return values. However, this might have undesirable

side-effects on the guest operating system which also needs

this information for optimizing cache usage. Furthermore, the

architectural parameters of the cache (such as size, associativity,

use of slice-hashing, etc.) can be easily determined from within

the VM using specific tests.

Finally, the most intuitive solution would be to completely

disable the rdtsc instruction for usermode code, since then

no CPU timing values could be obtained at all. However, many

usermode applications actually rely on this operation and, hence,

its disabling would cause significant compatibility issues.

VI. RELATED WORK

Timing and side channel attacks are well-know concepts in

computer security and have been used to attack many kinds

of systems, among others cryptographic implementations [41]–

[43], OpenSSL [44], [45], SSH sessions [46], web applica-

tions [47], [48], encrypted VoIP streams [49], [50], and virtual

machine environments [51]–[53].

Closely related to our work is a specific kind of these attacks

called cache games [24], [25], [54], [55]. In these attacks, an ad-

versary analyzes the cache access of a given system and deduces

information about current operations taking place. The typi-

cal target of these attacks are cryptographic implementations:

while the CPU performs encryption or decryption operations,

an adversary infers memory accesses and uses the obtained

information to derive the key or related information. In a recent

work, Gullasch et al. showed for example how an AES key can

be recovered from the OpenSSL 0.9.8n implementation [24]

and Zhang et al. introduced similar attacks in a cross-VM

context [53].

We apply the basic principle behind cache attacks in our work

and introduce different ways how this general approach can

be leveraged to obtain information about the memory layout

of a given system. Previous work focused on attacks against

the instruction/data caches and not on the address translation

cache, which is conceptually different. We developed novel

approaches to attack this specific aspect of a computer system.

Furthermore, all documented cache attacks were implemented

either for embedded processors or for older processors such

as Intel Pentium M (released in March 2003) [24], Pentium 4E

(released in February 2004) [25], or Intel Core Duo (released in

January 2006) [23]. In contrast, we focus on the latest processor

architectures and need to solve many obstacles related to modern

performance optimizations in current CPUs [22]. To the best

of our knowledge, we are the first to present timing attacks

against ASLR implementations and to discuss limitations of

kernel space ASLR against a local attacker.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have discussed a generic, timing-based

side channel attack against kernel space ASLR. Such side

channels emerge from intricacies of the underlying hardware

and the fact that parts of the hardware (such as caches and

physical memory) are shared between both privileged and non-

privileged mode. We have presented three different instances

of this methodology that utilize timing measures to precisely

infer the address locations of mapped kernel modules. We

successfully tested our implementation on four different CPUs

and within a virtual machine and conclude that these attacks are

feasible in practice. As a result, a local, restricted attacker can

infer valuable information about the kernel memory layout and

bypass kernel space ASLR.

As part of our future work, we plan to apply our methods to

other operating systems such as Mac OS X and more kinds of

virtualization software. We expect that they will work without

many adoptions since the root cause behind the attacks lies in

the underlying hardware and not in the operating system. We

further plan to test our methods on other processor architectures

(e.g., on ARM CPUs to attack ASLR on Android [11]). Again,

we expect that timing side channel attacks are viable since the

memory hierarchy is a shared resource on these architectures as

well.

Another topic for future work is the identification of methods

to obtain the physical address of a certain memory location from

user mode. One promising method would be to identify certain

data structures that are always mapped to the same physical

memory and use the technique of cache probing with them. First

experiments have shown that certain parts of mapped system

modules are constant for a given system (e.g., the physical base

address of ntdll.dll). Another possibility is to instrument

the characteristics of the Sandybridge hash function to locate

colliding memory locations and infer the bits of their physical

address.

VIII. ACKNOWLEDGEMENTS

This work has been supported by the Ministry of Economic

Affairs and Energy of the State of North Rhine-Westphalia

(Grant IV.5-43-02/2-005-WFBO-009) and the German Federal

Ministry of Education and Research (BMBF grant 16BY1207B

– iTES).

95

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

REFERENCES

[1] Aleph One, ―Smashing the Stack for Fun and Profit,‖ Phrack

Magazine, vol. 49, no. 14, 1996.

[2] blexim, ―Basic Integer Overflows,‖ Phrack Magazine, vol. 60,

no. 10, 2002.

[3] M. Conover, ―w00w00 on Heap Overflows,‖ 1999.

[4] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,

S. Beattie, A. Grier, P. Wagle, and Q. Zhang, ―StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-Overflow

Attacks,‖ in USENIX Security Symposium, 1998.

[5] Microsoft, ―Data Execution Prevention (DEP),‖ http://support.
microsoft.com/kb/875352/EN-US/, 2006.

[6] S. Bhatkar, D. C. DuVarney, and R. Sekar, ―Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory

Error Exploits,‖ in USENIX Security Symposium, 2003.

[7] PaX Team, ―Address Space Layout Randomization (ASLR),‖
http://pax.grsecurity.net/docs/aslr.txt.

[8] J. Xu, Z. Kalbarczyk, and R. K. Iyer, ―Transparent Runtime Ran-

domization for Security,‖ in Symposium on Reliable Distributed
Systems (SRDS), 2003.

[9] Solar Designer, ―‖return-to-libc‖ attack,‖ Bugtraq, 1997.

[10] H. Shacham, ―The Geometry of Innocent Flesh on the Bone:

Return-into-libc without Function Calls (on the x86),‖ in ACM

Conference on Computer and Communications Security (CCS),

2007.

[11] H. Bojinov, D. Boneh, R. Cannings, and I. Malchev, ―Address

Space Randomization for Mobile Devices,‖ in ACM Conference
on Wireless Network Security (WiSec), 2011.

[12] M. Russinovich, ―Inside the Windows Vista Kernel: Part 3,‖
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel.

aspx, 2007.

[13] Charles Miller and Dion Blazakis and Dino Dai Zovi and Stefan
Esser and Vincenzo Iozzo and Ralf-Phillipp Weinmann, iOS
Hacker’s Handbook. John Wiley & Sons, Inc., 2012, p. 211.

[14] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, ―kGuard:
Lightweight Kernel Protection Against return-to-user Attacks,‖ in

USENIX Security Symposium, 2012.

[15] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, ―Enhanced op-
erating system security through efficient and fine-grained address

space randomization,‖ in USENIX Security Symposium, 2012.

[16] T. Durden, ―Bypassing PaX ASLR Protection,‖ Phrack Magazine,

vol. 59, no. 9, 2002.

[17] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund,

and T. Walter, ―Breaking the Memory Secrecy Assumption,‖ in
European Workshop on System Security (EuroSec), 2009.

[18] M. Jurczyk, ―Windows Security Hardening Through Kernel Ad-
dress Protection,‖ http://j00ru.vexillium.org/?p=1038, 2011.

[19] P. Akritidis, ―Cling: A Memory Allocator to Mitigate Dangling
Pointers,‖ in USENIX Security Symposium, 2010.

[20] P. Akritidis, M. Costa, M. Castro, and S. Hand, ―Baggy Bounds
Checking: An Efficient and Backwards-Compatible Defense

against Out-of-Bounds Errors,‖ in USENIX Security Symposium,

2009.

[21] H. Shacham, M. Page, B. Paff, E. jin Goh, N. Modadugu, and

D. Boneh, ―On the Effectiveness of Address-Space Randomiza-
tion,‖ in ACM Conference on Computer and Communications

Security (CCS), 2004.

[22] K. Mowery, S. Keelveedhi, and H. Shacham, ―Are AES x86
Cache Timing Attacks Still Feasible?‖ in ACM Cloud Computing

Security Workshop (CCSW), 2012.

[23] O. Aciiçmez, B. B. Brumley, and P. Grabher, ―New Results

on Instruction Cache Attacks,‖ in Workshop on Cryptographic

Hardware and Embedded Systems (CHES), 2010.

[24] D. Gullasch, E. Bangerter, and S. Krenn, ―Cache Games –

Bringing Access-Based Cache Attacks on AES to Practice,‖ in
IEEE Symposium on Security and Privacy, 2011.

[25] E. Tromer, D. A. Osvik, and A. Shamir, ―Efficient Cache Attacks

on AES, and Countermeasures,‖ J. Cryptol., vol. 23, no. 2, Jan.
2010.

[26] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, ―Address Space

Layout Permutation (ASLP): Towards Fine-Grained Random-

ization of Commodity Software,‖ in Annual Computer Security

Applications Conference (ACSAC), 2006.

[27] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, ―An Em-

pirical Study of Operating Systems Errors,‖ in ACM Symposium

on Operating Systems Principles (SOSP), 2001.

[28] M. M. Swift, B. N. Bershad, and H. M. Levy, ―Improving

the Reliability of Commodity Operating Systems,‖ ACM Trans.

Comput. Syst., vol. 23, no. 1, 2005.

[29] W. A.-K. Abu-Sufah, ―Improving the Performance of Virtual

Memory Computers,‖ Ph.D. dissertation, University of Illinois at

Urbana-Champaign, 1979.

[30] Intel Corporation, ―Intel: 64 and IA-32 Architectures Soft-

ware Developer’s Manual,‖ 2007, http://www.intel.com/products/
processor/manuals/index.htm.

[31] Intel, ―TLBs, Paging-Structure Caches, and Their
Invalidation,‖ http://www.intel.com/content/www/us/en/

processors/architectures-software-developer-manuals.html.

[32] John L. Hennessy and David A. Patterson, Computer Architec-
ture: A Quantitative Approach. Elsevier, Inc., 2012, p. 118.

[33] D. Levinthal, ―Performance Analysis Guide for Intel

Core i7 Processor and Intel Xeon 5500 processors,‖

http://software.intel.com/sites/products/collateral/hpc/vtune/

performance analysis guide.pdf.

[34] Invisible Things Lab, ―From Slides to Silicon in 3

Years!‖ http://theinvisiblethings.blogspot.de/2011/06/

from-slides-to-silicon-in-3-years.html, 2011.

[35] R. Hund, T. Holz, and F. C. Freiling, ―Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms,‖ in

USENIX Security Symposium, 2009.

[36] E. J. Schwartz, T. Avgerinos, and D. Brumley, ―Q: Exploit
hardening made easy,‖ in USENIX Security Symposium, 2011.

[37] Giuffrida, Cristiano and Kuijsten, Anton and Tanenbaum, Andrew

S., ―Enhanced Operating System Security Through Efficient and
Fine-grained Address Space Randomization,‖ in Proceedings of

the 21st USENIX conference on Security symposium, ser. Secu-

rity’12. USENIX Association, 2012.

[38] J. Aas, ―Understanding the Linux 2.6.8.1 CPU Scheduler,‖ http:

//joshaas.net/linux/linux cpu scheduler.pdf, 2005.

[39] Microsoft, ―Description of Performance Options in Windows,‖
http://support.microsoft.com/kb/259025/en-us, 2007.

[40] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes:
Theory and Application. Prentice-Hall, 1993.

[41] P. C. Kocher, ―Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems,‖ in International Cry-

tology Conference (CRYPTO), 1996.

[42] M. Weiss, B. Heinz, and F. Stumpf, ―A cache timing attack on
aes in virtualization environments,‖ in Financial Cryptography
and Data Security (FC), 2012.

[43] O. Aciiçmez, ―Yet another MicroArchitectural Attack:: exploiting

I-Cache,‖ in ACM Workshop on Computer Security Architecture
(CSAW), 2007.

http://support/
http://pax.grsecurity.net/docs/aslr.txt
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel
http://j00ru.vexillium.org/?p=1038
http://www.intel.com/products/
http://www.intel.com/content/www/us/en/
http://software.intel.com/sites/products/collateral/hpc/vtune/
http://theinvisiblethings.blogspot.de/2011/06/
http://support.microsoft.com/kb/259025/en-us

96

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

[44] O. Aciiçmez, W. Schindler, and Ç etin Kaya Koç, ―Improving

Brumley and Boneh timing attack on unprotected SSL implemen-

tations,‖ in ACM Conference on Computer and Communications
Security (CCS), 2005.

[45] D. Brumley and D. Boneh, ―Remote Timing Attacks are Practi-
cal,‖ in USENIX Security Symposium, 2003.

[46] D. X. Song, D. Wagner, and X. Tian, ―Timing Analysis of
Keystrokes and Timing Attacks on SSH,‖ in USENIX Security

Symposium, 2001.

[47] S. Chen, R. Wang, X. Wang, and K. Zhang, ―Side-Channel Leaks

in Web Applications: A Reality Today, a Challenge Tomorrow,‖
in IEEE Symposium on Security and Privacy, 2010.

[48] E. W. Felten and M. A. Schneider, ―Timing Attacks on Web
Privacy,‖ in ACM Conference on Computer and Communications

Security (CCS), 2000.

[49] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M.
Masson, ―Spot Me if You Can: Uncovering Spoken Phrases in
Encrypted VoIP Conversations,‖ in IEEE Symposium on Security

and Privacy, 2008.

[50] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose,
―Phonotactic Reconstruction of Encrypted VoIP Conversations:

Hookt on Fon-iks,‖ in IEEE Symposium on Security and Privacy,

32 bit Virtual Address – Regular Page

Page Directories Page Tables

32 bit Virtual Address – Large Page

Page Directories

Physical Memory

Physical Memory

2011.

[51] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, ―Hey,

you, get off of my cloud: exploring information leakage in third-
party compute clouds,‖ in ACM Conference on Computer and

Communications Security (CCS), 2009.

[52] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, ―Homealone:

Co-residency detection in the cloud via side-channel analysis,‖ in
IEEE Symposium on Security and Privacy, 2011.

[53] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, ―Cross-VM
Side Channels and Their Use to Extract Private Keys,‖ in ACM

Conference on Computer and Communications Security (CCS),
2012.

[54] J. Bonneau and I. Mironov, ―Cache-Collision Timing Attacks

Against AES,‖ in Cryptographic Hardware and Embedded Sys-
tems (CHES), 2006.

[55] C. Percival, ―Cache Missing for Fun and Profit,‖ http://www.
daemonology.net/hyperthreading-considered-harmful/, 2005.

APPENDIX A.

ADDRESS RESOLUTION

Figure 8 illustrates the address resolution for regular pages

(upper part) and large pages (lower part) on PAE systems.

Notice that in the first case, the resulting PTE points to one

single frame. In the second case, the PDE points to the first one

of a set of adjacent frames, that in sum span the same size as

a large page.

Figure 8. Address resolution for regular and large pages on PAE systems

Figure 9. Double page fault measurements on Intel i7-870 (Bloomfield)
processor

APPENDIX B.

DOUBLE PAGE FAULT

Figure 9 shows the double page fault measurements on an

Intel i7-870 (Bloomfield) processor. It is not possible to use a

simple threshold value to tell apart allocated from unallocated

pages without introducing a large amount of faulty results. In

the zoomed version in Figure 10, one can see that it is still

possible to distinguish unallocated from unallocated pages. Note

that this figure uses lines instead of dots to stress the focus on

transitions from high to low values (or vice versa). We therefore

use a change point detection (CPD) algorithm [40] in this case.

Figure 10. Zoomed-in view of Figure 9

2 9 9 12

PDP

PDP Tables

PDE

PTE

Fram

2 9 21

PDP

PDP Tables

PDE
…

1st Frame

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

http://www/

