
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

69

Intel's Helix Ph Processor Efficiency Evaluation

and Curriculum Energy Model

Dr. Chinmay R. Pattanaik
1
*, Mr.Gyana Prakash Bhuyan

2

1
*Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

chinmayaranjan@thenalanda.com*, gyanprakash@thenalanda.com

Abstract— The first multi-core/multi-threaded x86-based

commercial CPU is Intel's Xeon Phi. Xeon Phi is a member of a
new generation of high performance computing processors that
aim for both great compute density and energy economy. The
lack of a high-level energy model prevents Xeon Phi software
writers from quickly assessing and optimising energy efficiency.
In order to make it easier to create software that is energy-
efficient, this work presents an instruction-level energy model
for the Xeon Phi CPU. In order to build this model, we must first
define the processor's energy usage. We do this by determining
how energy per instruction varies with the processor's number
of cores, the number of running threads per core, and the kind
of instruction. We build an instruction-level energy model based
on the energy characterization, and we validate the correctness
of the model between 1% and 5% for real-world benchmarks.
We demonstrate how the energy model can be applied to these
benchmarks to identify software inefficiencies and discover that
Linpack code may be modified to uphold an energy efficiency of
up to 10%.

Index Terms—Xeon Phi, Energy Characterization, Instruction-

Level Energy Model.

I. INTRODUCTION

Current processors increasingly exploit thread-level paral-

lelism (TLP) to improve performance. As a result, multi-

core/multi-thread processors are becoming the dominant archi-

tectures for domains ranging from mobile platforms to high-

performance computing. As technology scales, the number of

transistors available will continue to grow every generation.

To make full use of those transistors and further exploit the

potential of TLP, architects will design chips with larger core

counts. While software developers have been focusing on the

use of many-core/multi-thread processor to boost throughput,

performance per watt is crucial. As such, it is important to

study the energy related characteristics of many-core/multi-

thread processors to facilitate energy-efficient code design.

Xeon Phi, also known as Knights Corner (KNC), is the

first product using Intel’s Many Integrated Core (MIC) archi-

tecture, which is designed for high-performance computing

(HPC) systems. The processor consists of 60 in-order x86-

based cores, each of which is able to run at most 4 threads.

By packing such a large number of hardware threads into a

single processor, Xeon Phi provides much higher compute

density than current multi-core processors. Xeon Phi also

demonstrates impressive energy efficiency. A Xeon Phi based

system tops the Green500 list as the world’s most energy

efficient supercomputer as of November 2012 [1].

To provide opportunities for software developers to op-

timize workloads towards energy efficiency, we develop an

instruction-level energy model of the Xeon Phi processor

based on detailed energy characterization. An instruction-level

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

70

energy model links energy consumption directly to software

code, which is intuitive for software developers to

understand energy cost. In addtion, this model only needs

performance counter statistics as input, which existing

software profiling tools already provide.

This paper makes the following contributions:

1) We characterize the energy per instruction (EPI) of Xeon

Phi using a set of specialized microbenchmarks

exercising different categories of instructions with varying

memory behavior, number of active cores, and number of

active threads per core.

2) We build an instruction-level energy model for Xeon Phi

using characterized EPIs along performance counter

statis- tics to capture workload activity. The model

accurately predicts dynamic energy consumption with an

average error rate under 5%. To the best of our

knowledge, this is the first instruction-level energy model

for a many- core/multi-thread x86 processor.

3) This model provides software developers opportunities

to improve energy efficiency. In particular, our model

identifies that more than 10% of energy consumption

is due to redundant software prefetch operations for a

performance-tuned Linpack implementation.

II. ENERGY MODELING TAXONOMY

We present a taxonomy of dynamic energy modeling ap-

proaches based on how to model processor intrinsic energy

characteristics and how to capture runtime activity factors,

shown in Table 1. This section explains each taxonomy

category and where our instruction-level model for Xeon Phi

fits in.

A. Intrinsic Energy Characteristics

There are two ways to model intrinsic energy

characteristics of processor: architecture- and instruction-

level. Architecture- level modeling requires capacitance

information of major architectural blocks to compute per

access energy. Instruction- level modeling uses characterized

EPI to model processor energy.

Although architecture-level modeling provides detailed

en- ergy breakdown for each architectural block, which is

useful for microarchitecture-level exploration, it is often

difficult to obtain low-level capacitance information. At the

same time, the microarchitecture-level analysis provides little

intuition for software developers.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

71

Table 1: Taxonomy of energy modeling approaches.

On the other hand, instruction-level models provide more

insights for software developers to find opportunities to opti-

mize their code for energy efficiency. Traditionally these mod-

els work well for in-order core designs [8], which tends to be

the dominant microarchitecture for current many-core/multi-

thread processors, such as Intel’s Xeon Phi and GPUs [4].

B. Activity Factor

Activity factors indicate how frequent an architectural block

is accessed for architecture-level models or how many dy-

namic instructions are executed in each category of instruc-

tions for instruction-level models. The methods to collect

activity factors fall into three categories:

1) Simulation or Profiling: The first approach obtains

the activity factors through detailed simulation or profiling.

Wattch [2] and McPAT [7] are examples of architecture-level

energy models using simulators to collect per block access

counts. Tiwari et al. use profiling to provide instruction break-

down for their instruction-level energy model of embedded

systems [8]. Although simulation or profiling provides the

most detailed information for accurate activity factors, it is

relatively slow to simulate or profile workloads, making it

unattractive for software developers.

2) Performance Counters: Performance counters can pro-

file microarchitectural block activity and instruction break-

down. Isci et al. use performance counters to estimate activity

factors for Pentium 4’s architecture-level energy model [5].

3) Analytical Performance Model: Analytical performance

model can quickly predict workload behaviors without the

need for real hardware or detailed simulators. Previous work

has demonstrated this approach for out-of-order CPUs [6] and

GPUs [4].

C. Our Energy Model

We construct an energy model for Xeon Phi using EPI

to model processor intrinsic energy characteristics and per-

formance counters to profile activity factors. Our work is

the first to construct an instruction-level energy model using

performance counters on a x86-based many-core/multi-thread

processor. The foundations for our model are characterized

EPIs of representative instruction types with different number

of cores and threads per core configuration. This energy model

can be attached to a range of runtime performance counter

tools and analytical models. In this work we have integrated

our model with Intel’s VTune performance profiling tool to

predict workload dynamic energy.

Figure 1 illustrates the overall structure of our instruction-

level energy model and the interface between workloads and

Micro-
benchmarks

EPIs

X Energy

Workloads Performance

Counters
(Instruction,Operand)

Counts

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

72

Fig. 1: Instruction-level energy model.

the energy model. We develop microbenchmarks for each

instruction type running with different number of cores and

threads per core configurations to characterize EPI.

Instruction is categorized based on its opcode type and

operands location, since EPI heavily depends on where

operands reside. Runtime performance counter statistics

compute the breakdown of instruction and operand source

combinations. In the end, we multiply the runtime instruction

counts with the coresponding EPI to compute the total energy

of the workload. We have validated our model against

measurement and show software developers can use this

model to identify energy inefficiencies of their code in Sec.

V

III. METHODOLOGY

This section discusses the background of the Xeon Phi

pro- cessor, the measurement setup, microbenchmarks

developed, and power and timing statistics collected for

microbenchmark characterization.

A. Xeon Phi Processor

Xeon Phi is built in a 22 nm process and contains 60 cores

running at 1.09 GHz, where each core can run 4 threads

at the same time. Each core is in-order with a 512-bit vector-

processing unit, a 32 KB L1 I-cache and D-cache and a 512

KB private L2 cache. Cores are connected together via a ring

bus and follow the standard MESI coherency protocol for

maintaining the shared state among cores.

B. Measurement Setup

We have instrumented a Xeon Phi card, which is part

of the Xeon Phi Beta Software Development Platform (SDP),

for power measurement. We measure voltages and currents

inside the board to compute dynamic power. The power not

only includes the power of the Xeon Phi processor, but also

other components like memory and fan. A National

Instruments Data Acquisition system collects the statistics

sampled at 1 KHz, which is sufficient for our purpose.

C. Microbenchmarks developed

Each microbenchmark is a loop that iterates a target

instruc- tion type. We cover all major instruction types, as

shown in Table 2. Each column presents different instruction

opcodes, including scalar, vector, vprefetch0 (prefetch to

L1 cache) and vprefetch1 (prefetch to L2 cache). Each

row shows the mode of data operand access, including

register, L1, L2, prefetched from memory (both hardware

and software prefetch) and memory without prefetch.

Microbenchmarks are deployed as one copy per hardware

thread with different number of cores and threads per core

configuration. We sweep

 Intrinsic Energy Characteristics

Architecture-Level Instruction-Level

Activity
Factor

Simulator/
Profiler

Wattch [2]/McPAT [7]
(Out-of-Order)

Tiwari [8]
(Embedded)

Performance
Counters

Isci [5]
(Out-of-Order)

This work

(Xeon Phi)

Analytical
Perf. Model

Karkhanis [6]
(Out-of-Order)

Hong [4]
(GPU)

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

73

Table 2: EPIs (nJs) of instruction types and modes of data

operand access for single-core, single-thread.

Power

p1

p0

c0 c1 Cycles

the number of cores from 1 to 60 and the number of threads

per core from 1 to 4.

D. Timing and Power Statistics Collection

To compute EPI, Figure 2 shows timing and power statis-

tics we collect. p0 is the average idle power before the

microbenchmark starts, including power for fan, memory,

operating system and leakage. Instruction RDTSC reads the

cycle before the microbenchmark starts (c0) and right after the

microbenchmark ends (c1). The difference between c0 and c1

is the total number of cycles executed by the microbenchmark.

The measurement setup records the dynamic power sampled

at 1 KHz as the microbenchmark runs. We use the average

dynamic power (p1) subtracting the initial idle power (p0),

the result of which is the power consumed by the mi-

crobenchmark. Equation 1 computes EPI for each instruction,

where N is the total number of dynamic instructions in the

microbenchmark.

Fig. 2: Statistics collected for EPI characterization.

different scalar or vector instruction subtypes with register

operands. The second major finding is that the energy cost

of data movement is significant compared to the energy of

computation. Using vector instructions as an example, the EPI

with register operands is 1.00 nJ while the EPI of moving

data from memory to the ALU without prefetching is 233.17

nJ. However, the energy cost of data movement can be sig-

nificantly reduced through intelligent prefetching. We see, for

example, that moving data from L2 to L1 using vprefetch0

(1.81 nJ) followed by a vector compute instruction (1.43 nJ)

is more energy efficient than a vector instruction generating

a L1 miss and incurring a demand fetch from L2 (8.27 nJ).

Prefetch instructions do not stall the pipeline as occurs for

other instructions that generate cache misses, and the idle

energy of the pipeline stalls significantly adds to the EPI of

non-prefetch instructions. However, prefetch instructions must

be used judiciously. For example, issuing a vprefetch1

when the data is already in L2 results a 1.19 nJ EPI overhead

with no performance gain.

B. Single-Core, Multi-Thread Characterization

We also evaluate EPI by running microbenchmarks on a

EPI =
(p1 − p0) ∗ (c1 − c0)/Freq

N
IV. XEON PHI CHARACTERIZATION

(1)
single core with one (1T), two (2T), and four (4T) active

threads. Figure 3 plots EPIs for different instruction types

while varying the number of threads per core. We observe

Energy of instructions mostly depends on instruction types,

including both opcode types and operand locations in cache

hierarchy, the number of active threads per core, and the

number of active cores. Instruction type determines which

functional units to stress, and different active thread-core

configurations exhibit different resource contention, both of

which impact the dynamic energy of a instruction. Since each

core of Xeon Phi is a simple in-order core, the inter-instruction

effect within a core is negligible, especially when running on

many-core/multi-thread cases. In the following sections, we

present EPI characterization results of Xeon Phi for different

instruction types with different number of cores and threads

per core configurations.

A. Single-Core, Single-Thread Characterization

Table 2 shows the EPIs for instructions with different

instruction types and data operand access modes for a single

thread running on one core. We observe several interesting

characteristics. First, the EPI of vector instructions with reg-

ister operands is about 2X compared to scalar instructions.

However, because the VPU is 512-bit wide, fully-utilized

vector instructions are actually 8X more energy efficient

than scalar instructions. We find little EPI variation across

 microbenchmark

running
 Scalar Op Vector Op vprefetch0

(to L1)
vprefetch1
(to L2)

Register 0.45 1.00 N/A N/A

L1 0.88 1.43 1.19 1.19

L2 7.72 8.27 1.81 1.19

Mem w/
Prefetch

52.14 52.69 50.00 25.00

Mem w/o
Prefetch

232.62 233.17 N/A N/A

Write to
Mem

62.14 62.69 N/A N/A

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

74

that for both scalar and vector instructions, the EPI of

the 1T configuration is 67% higher than the 2T case.

This is mainly due to Xeon Phi’s core microarchitecture that

pro- hibits instruction issue from the same thread in back-to-

back cycles. This means that running one thread per core

only utilizes half of the core throughput. However, due to

non- ideal clock gating within the core, the power

dissipation of

103

102

101

100

10-1

Fig. 3: EPI characterization for single-core, multi-thread.

1T

2T

4T

E
n
e
rg

y
 P

e
r

In
s
t

(n
J)

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

75

4T

2T

1T

4T

2T

1T

4T

2T

1T

4T

2T

1T

4T

2T

1T

C
y
c
le

s
 P

e
r

In
s
tr

u
c
ti

o
n

C

y
c
le

s
 P

e
r

In
s
tr

u
c
ti

o
n

C

y
c
le

s
 P

e
r

In
s
tr

u
c
ti

o
n

E
n
e
rg

y
 P

e
r

In
s
tr

u
c
ti

o
n
 (

n
J)

E
n
e
rg

y
 P

e
r

In
s
tr

u
c
ti

o
n
 (

n
J)

80 2.5

70
2.0

60

50 1.5

40

30 1.0

20
0.5

10

0 0.0

Register-to-Register Vector Add

160

140

120

100

80

60

40

20

0

1.0

0.8

0.6

0.4

0.2

0.0

80 70

70 60

60
50

50
40

40
30

30

20
20

10 10

0 0

Memory-to-Register Load

160 70

140 60

120
50

100
40

80
30

60

40
20

20 10

0 0

80 70

70 60

60
50

50
40

40
30

30

20
20

10 10

0 0

Register-to-Memory Store

160 70

140 60

120
50

100
40

80
30

60

40
20

20 10

0 0
0 10 20 30 40 50 60

Num of Cores

0 10 20 30 40 50 60

Num of Cores

0 10 20 30 40 50 60

Num of Cores

0 10 20 30 40 50 60

Num of Cores

Fig. 4: Total power, per-core CPI, chip bandwidth, and per-core EPI sweeping the number of active cores and threads.

the core running a single thread remains at 83% of the fully-

utilized core, explaining why the 1T configuration is energy

inefficient. The second effect we observe is that for scalar

and vector instructions with register operands or L1 hit cache

access, the 2T configuration already fully utilizes the core and

hence increasing to 4 threads does not change the EPI. For

instructions with cache accesses that have longer delay due

to L2 hits (v l2), hardware prefetch (v hwp), or L2 misses

(nohwp), more threads allow overlap with memory access idle

time and we observe a decrease in EPI. Finally, the EPI of

prefetch instructions is largely independent of the number of

threads per core because the throughput is mainly dependent

on the number of entries in the prefetch buffer, which is

independent of the thread configuration.

C. Multi-Core, Multi-Thread Characterization

As a many-core processor, Xeon Phi is commonly expected

to utilize a large number of cores and active thread contexts.

The energy characteristics of the processor are different with

many active cores because of contention on shared, un-core

resources such as the ring interconnect, memory controllers,

and DRAMs. In this section, we study how EPI scales with

the number of cores ranging from one to sixty. In order to

study contention effect, we analyze three microbenchmarks

4T

2T

1T

4T

2T

1T

4T

2T

1T

4T

2T

1T

4T

2T

1T

4T

2T

1T

4T

2T

1T

P
o
w

e
r

(W
)

P
o
w

e
r

(W
)

P
o
w

e
r

(W
)

B
a
n
d
w

id
th

 (
G

B
/
s
)

B
a
n
d
w

id
th

 (
G

B
/
s
)

B
a
n
d
w

id
th

 (
G

B
/
s
)

E
n
e
rg

y
 P

e
r

In
s
tr

u
c
ti

o
n
 (

n
J)

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

76

with distinct properties. The first microbenchmark, Register-

to-Register Vector Add, performs a simple vector arithmetic

operation with register source and destination operands,

incur- ring no cache misses. The second microbenchmark,

Memory- to-Register Load, is designed to load a full cache

line from memory into the local cache and deliver a vector of

data into the register file. Finally, Register-to-Memory

Store, fetches the cache line from memory to the local

cache and writes the value of the vector register to the

memory location. This microbenchmark requires an equal

amount of read and write bandwidth to the memory system.

Each row in Figure 4 presents results for the three

microbenchmarks. We show total power consumption, per-

core CPI, total chip memory bandwidth and per-core EPI.

Register-to-Register Vector Add: Starting from the chip

power consumption on the upper left of Figure 4, we observe

that for all threads configurations (1T, 2T, and 4T) the total

chip power increases linearly with the number of cores,

reflecting nearly ideal clock gating when all threads in

the core are completely idle. We also notice that from 1T

to 2T power increases by 1.2X but power does not change

from 2T to 4T, as observed in our previous single-core multi-

thread characterization. The CPI characterization plot also

illustrates that 1T performance is more than 2X worse

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

77

Measured Avg EPI
Model Avg EPI

Table 3: Performance counter equations to compute

combinations of instruction types and operand source modes.

140

120

100

80

60

40

20

0
md

scan

reduction

stencil linpack_29k

than 2T and 4T due to the pipeline bubble effect discussed

previously. The third plot in the first row of the figure shows

that bandwidth is zero, since vector instructions with register

operands do not generate any memory activity. We see that

EPI is constant while scaling the number of active cores since

register operations are local to each core and independent of

other core activity.

Fig. 5: EPI validation of energy model.

Register-to-Memory Store: The third microbenchmark com-

bines the memory read characteristic of the previous mi-

crobenchmark with an equal amount of write bandwidth.

Starting from the power and CPI characterization, we see

an obvious decrease in the power slope and a significant

increase in CPI, both of which can be explained by the

bandwidth characterization. Bandwidth utilization increases

very quickly from 1 to 20 cores and almost doubles the

bandwidth requirement for the previous microbenchmark at

this point. Bandwidth quickly saturates after 30 cores for

the 2T and 4T configurations, and at 60 cores all thread

configurations consume nearly the same bandwidth. Combing

the effects of power and CPI scaling, the EPI characterization

shows that a large number of active cores is detrimental

and a minimum EPI exists for fewer active cores due to

the bandwidth saturation of such a large number of memory

requests.

Memory-to-Register Load: The second row in Figure 4

characterizes the behavior of the memory read intensive mi-

crobenchmark. The total power more than doubles compared

to the core-bound microbenchmark, reflecting the increased

activity of the ring interconnect, the memory controllers, and

DRAMs. Additional active threads per core lead to higher

power consumption due to the additional memory requests

initiated by those threads. We see that the slope of the power

curve gradually decreases after about 10 active cores due to

the amortization of the power consumption of the un-core

resources. The CPI characterization demonstrates that scaling

from 1 core to 60 cores slowly increases the CPI for all thread

configurations due to increased effect of shared resource

contention. Multiple threads per core (4T) exaggerate this

effect but still offer CPI benefit due to overlapping memory

requests. These issues are better understood by observing the

bandwidth characterization results. For 1T there is a linear

increase in bandwidth with number of active cores, but for

the 4T case, the processor gradually becomes bandwidth

starved beyond 40 cores, explaining the CPI results. The EPI

calculation, shown in Equation 1, illustrates a proportional

relationship to both power and CPI. The initial steep drop in

EPI is due to the decreased slope of power while increasing the

number of cores. After about 20 active cores EPI is relatively

flat with increased active core counts due to the counteracting

trends for power and CPI.

E
P
I(

n
J)

Instruction
Types

Operand
Sources

(Instruction, Operand) Counts

Scalar Op Register INSTRUCTIONS EXECUTED −
VPU INSTRUCTIONS EXECUTED

Vector Op Register VPU INSTRUCTIONS EXECUTED

Scalar &
Vector Ops

L1 DATA READ OR WRITE −
DATA READ MISS OR WRITE MISS

L2 DATA READ MISS OR WRITE MISS −
(L2 DATA READ MISS MEM FILL +
L2 DATA READ MISS CACHE FILL +
L2 DATA WRITE MISS MEM FILL +
L2 DATA WRITE MISS CACHE FILL)

Mem w/
Hardware
Prefetch

HWP L2MISS

Write to
Mem

L2 WRITE HIT

vprefetch0 L1 L1 DATA PF1 −
L1 DATA PF1 MISS

vprefetch0 L2 L1 DATA PF1 MISS

vprefetch1 L2 L2 DATA PF2 −
L2 DATA PF2 MISS

vprefetch1 MEM L2 DATA PF2 MISS

All Ops Core-to-
Core

L2 DATA READ MISS CACHE FILL +
L2 DATA WRITE MISS CACHE FILL

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

78

V. XEON PHI ENERGY MODEL

Using characterized EPIs from previous section as internal

parameters, our model takes runtime performance counter

statistics as input to predict energy consumption of

workloads. This section describes dynamic performance

counter statistics collected, model validation against

measurement, and usecases for software developers to

identify energy saving opportuni- ties.

A. Collecting Instruction Information

We use performance counters to collect the instruction

mix and operand source behavior of the workloads. These

statistics are collected using standard performance counters

with Intel’s VTune tool. Table 3 shows how performance

counters are used to compute the relevant combinations of

instruction types and operand sources.

B. Model Validation

The energy model provides detailed instruction-level EPI

breakdowns for complex, real-world applications using only

performance counter instrumentation. We validate the energy

model using the SHOC benchmark suite [3] and Linpack

against energy measurement from our instrumented Xeon Phi

card. All benchmarks are run using 60 cores and four threads

per core. The results, shown in Figure 5, demonstrates error

rates between 1% and 5%.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

79

Redundant SW-PF

Remote Cache

MEM

Hardware PF

Software PF

Private Cache

Compute

100% 1.5

80%

60%

1.4

1.3

1.2

40%

1.1

20%

1.0

0.9

0% 0.8
0.4

0.5 0.6 0.7 0.8 0.9 1.0 1.1

Performance (normalized)

Fig. 6: Energy breakdown of the SHOC workloads and

Linpack.

C. Find Potential Opportunities for Energy Efficiency

The primary use of instruction-level energy model is to

provide opportunities for software developers to optimize their

code for energy efficiency. We identify two such opportunities

for our benchmarks.

The first use case identifies opportunities to eliminate

wasteful software prefetch operations. The energy breakdown

in Figure 6 shows that for Linpack, across different input sizes,

around 10% of the energy is spent on redundant software

prefetch operations that fetch data already in the target cache.

The reason for this inefficiency is because software developers

insert prefetch instructions to fetch data early hoping to avoid

memory stalls. Software developers tend to over provision

prefetch operations because they generally do not hurt per-

formance if the data is already in the target cache. However,

redundant prefetch operations increase energy consumption

because the hardware still needs to execute the prefetch

instructions and compare tags to see whether the data is in

the cache or not. Our model identifies that this inefficiency

can be as high as 10% for complex workloads, providing

opportunities for software developers to write more energy

efficient code.

We also find that the instruction-level energy model can

be used to find the best version of software implementation

for a particular algorithm. To illustrate this situation, we

implement four versions of the stencil algorithm with four

different prefetch strategies. The results, shown in Figure 7,

present the performance and energy consumption of the four

versions of stencil normalized to the original implementation

which includes both software and hardware prefetching (HW-

PF+SW-PF). The most optimized version occupy the lower

right corner of the plot with lower energy and better perfor-

mance. We see that the version with hardware prefetch only

(HW-PF only) is 10% more energy efficient than the baseline

although performance is very similar. These two versions

also perform significantly better than disabling the hardware

prefetcher (SW-PF only) and disabling all prefetching. For

stencil, the hardware prefetcher performs quite well and the

instruction energy overhead of software prefetching is not

justified. The other benchmarks do not display this behavior

because the hardware prefetcher is less effective.

HW-PF+SW-PF

SW-PF only

HW-PF only

no prefetch

E
n
e
rg

y
 B

re
a
k
d
o
w

n

E
n
e
rg

y
 (

n
o
rm

a
li
z
e
d
)

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

80

Fig. 7: Energy-delay tradeoffs for different prefetch

configu- rations for the stencil benchmark.

VI. CONCLUSION

We present detailed energy characterization of the

Xeon Phi chip identifying energy behavior trends as a

function of instruction types and the number of active threads

and cores. Using this characterization data, we build a highly

accurate instruction-level energy model for the processor. We

show that this energy model can be used to identify

opportunities to improve energy efficiency. This is the first

work to characterize such a large many-core/multi-thread

x86-based system and build a high-level energy model for

software developers.

ACKNOWLEDGMENT

S

We thank the Intel Parallel Computing Lab for their

support and feedback during this work. Special thanks are

due to Victor Lee for hosting this research and providing

guidance throughout the project. We also thank Mikhail

Smelyanskiy for providing the Linpack implementation on

Xeon Phi. This work was also partially supported by

STARnet, a Semiconduc- tor Research Corporation program

sponsored by MARCO and DARPA. This work was also

partially supported by the National Science Foundation

(NSF) Expeditions in Computing Award #: CCF-0926148.

Any opinions, findings, and conclu- sions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the

National Science Foundation.

REFERENCES

[1]http://www.green500.org/lists/green201211.
[2]D. Brooks, V.Tiwari, and M. Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In ISCA, 2000.
[3]A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth, K. Spafford,

V. Tipparaju, and J. Vetter. The Scalable HeterOgeneous Computing
(SHOC) Benchmark Suite . In GPGPU, 2010.

[4]S. Hong and H. Kim. An integrated gpu power and performance model.
In ISCA, 2010.

[5]C. Isci and M. Martonosi. Runtime power monitoring in high-end
processors: Methodology and Empirical data. In MICRO, 2003.

[6]T. Karkhanis and J. Smith. Automated design of application specific
superscalar processors: an analytical approach. In ISCA, 2007.

[7]S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. Mcpat:
An integrated power, area, and timing modeling framework for multicore
and manycore architectures. In MICRO, 2009.

[8]V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embeded
software: a first step towards software power minimization. In IEEE
Transactions on VLSI Systems, 1994.

http://www.green500.org/lists/green201211

