
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

44

Hybridization of meta-heuristic algorithm for load

balancing in cloud computing environment
Mr.Gandhi Rath1*, Dr. Amaresh Sahu2

1*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

gandhirath@thenalanda.com*, amareshsahoo@thenalanda.com

A B S T R A C T

Load balancing of tasks on

the cloud environment is an

important aspect of

distributing resources from

a data centre. Due to the

dynamic computing

through the internet; cloud

computing agonizes from

over- loading of requests.

Load balancing has to be

carried out in such a

manner that all virtual machines (VM) should have balanced load to achieve optimal utilization of its

capabilities. This paper proposes a novel methodology of dynamic balancing of load among the virtual

machines using hybridization of modified Particle swarm optimization (MPSO) and improved Q-

learning algorithm named as QMPSO. The hybridization process is carried out to adjust the velocity of

the MPSO through the gbest and pbest based on the best action generated through the improved Q-

learning. The aim of hybridization is to enhance the performance of the machine by balancing the load

among the VMs, maximize the throughput of VMs and maintain the balance between priorities of tasks

by optimizing the waiting time of tasks. The robustness of the algorithm has been validated by

comparing the results of the QMPSO obtained from the simulation process with the existing load

balancing and scheduling algorithm. The comparison of the simulation and real platform result shows

our proposed algorithm is outperforming its competitor.

1. Introduction

Load balancing in Cloud computing is one of the most challeng-

ing and useful research for distributing the tasks among the virtual

machines at the Data centers. Cloud computing is the concept of

on-demand resource sharing through the internet. Cloud consists

of thousands of interlinked computers in a multifarious manner,

where all files and applications are hosted. Cloud computing inte-

grates the distributed and parallel computing strategy to offer

sharing of resources such as software, hardware, information and

files as per demand and request of other devices or computer on

the cloud. This concept offers ‘‘pay as you need” model in the dis-

tributed network. In this strategy, the customer does not require

purchasing any computational platforms or software to perform

a task and only require the connectivity of the internet to use the

resources by paying the money for the duration it has been used.

This process reduces the cost of purchasing each software package

which are not required full-time and cloud computing provides the

facility of dynamic use of the resources. VMs are the processing

units in the cloud which compute and share resources as and when

required dynamically during execution of the task. In the cloud

network, a large number of VMs are connected keeping the

resources in pre-emptive and non- pre-emptive manner, as a result

resources are not distributed equally and some VMs do not get a

chance to acquire the resources. When a task is submitted in the

cloud, VMs should execute the task in a faster manner to reduce

its run time complexity and in this context; all the VMs should

run in parallel manner. There arises the need of scheduling the

assigned tasks and completing the execution with in available

resources. When multiple tasks are assigned to one or more VMs,

then they run concurrently to complete the assigned tasks. When

the scheduler is scheduling the tasks for VMs, it should make sure

that all tasks are not loaded in one VM only keeping other VMs

completely free or underutilized. Hence, it is the responsibility of

the scheduler that all the customer tasks should be equally bal-

anced among all VMs in the cloud. To avoid the problem of load

balancing among all VMs, it requires an intelligent load balancing

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

45

algorithm to improve the response time of execution of assigned

tasks by safeguarding the maximum utilization of offered

resources. Many researchers have been discussing about load bal-

ancing strategy in heterogeneous and homogeneous environments

and load balancing strategy such as (1) static load balancing and

(2) dynamic load balancing. The main aim of the load balancing

strategy is to enhance the run time of tasks using the available

resources whose capacity of tasks fluctuates during run time in

irregular manner. Static load balancing methods will be concen-

trated properly when there is a low fluctuation of load in the

VMs. Hence, the static load balancing algorithm will not properly

work as the loads vary unpredictably during run time. Dynamic

load balancing is more advantageous than static load balancing

where loads will be varying at run time and need to consider the

information associated with load information and maintenance.

Due to the rapid growth of the network and necessity of resources

during the run time, the dynamic techniques are highly essential

and fruitful in balancing load among the heterogeneous resources.

Our proposed hybrid meta-heuristic algorithm is a dynamic strat-

egy for balancing the load as well as setting the priority of tasks in

the waiting queue of VMs. When the multiple tasks have been

assigned to a particular VM and other VMs are free in the cloud

network, in that situation, the tasks should be removed from a

heavily loaded VMs and assigned to the under loaded VMs. Hence,

the multiple tasks can be distributed among all VMs with mixed

priorities, as a result, the waiting time of the task will be reduced

and throughput of VMs will be increase and load balancing will

be carried out at VMs. The system model of load balancing is

shown in Fig. 1, where user requests the task to be executed in

the host. The data centre controller is in charge of the task manage-

Fig. 1. System model for Load balancing.

ment and assigns it to the load balancer. The load balancer runs the

proposed algorithm to select and allocate the task to VM Managers.

VM manager verifies the active VMs, the number of resources

required by the tasks and availability of resources with host, if

available VMs are not sufficient, then it creates new VMs as per

the demand of the tasks. In this manner, the load balancing will

be carried out based on the fitness values of the VMs. Each host

has a finite number of VMs.

This paper aims to achieve a long term load balancing of cloud

data centers and provide efficient performance of external services.

Usually, the data center is situated far away from the end-users.

Distributed servers are the parts of a cloud environment which is

available throughout the different internet hosting applications.

In order to provide better Quality of Service (QoS) and efficient per-

formance of external services, efficient scheduling and load balanc-

ing among the nodes in the cloud environment is required. An

efficient load balancing mechanism attempts to speed up the exe-

cution time of task requested by users and also shrinks system

imbalance and provides fair response time to the users. Better load

balancing and scheduling mechanism evades heavy loaded and

under loaded situation in data centers. When some VMs are over-

loaded with numerous tasks, these tasks are migrated to the under

loaded VMs in the same data centers to provide better QoS metrics

such as efficient response time, resource utilization, scalability and

improve the migration time of the tasks. The frequent VM migra-

tions also affect the performance of the cloud ecosystem. Hence,

the hybrid meta-heuristic algorithm has been proposed to resolve

this kind of dynamic problem. In this work, the objective function

has been formulated based on taking a weighted sum of the differ-

ence between load on each host and average load on the cloud,

total energy consumption and the number of tasks submitted to

the different processing units. Each time the fitness value of each

VM is calculated through the proposed algorithm (QMPSO) and

the task is assigned or migrated to that VM whose fitness value

is less than the threshold value.
The main emphasis of this work may be summarized as follows:

(1) load balancing for independent task in cloud computing has

been studied and above problem has been formulated as a multi-

objective constraints based optimization problem; (2) Three objec-

tive function has been formulated based on the constraints; first

one, the difference of load between each host and average load

on Cloud network; second one, in terms of the total energy con-

sumption and third one, in terms of number of task submitted to

the different number of processing unit in the cloud network.

The overall fitness function is formulated by taking weighted

sum of each fitness function; (3) novel method to the solution of

load balancing in cloud network problem using QMPSO is sug-

gested in this article; (4) the proposed algorithm has been investi-

gated for load balancing in cloud environment and result obtained

through the proposed algorithm are compared with other opti-

mization algorithms such as MPSO and Q-Learning; (5) the perfor-

mance of the algorithm has been validated through the simulation

result and real scenario.
This paper contributed to improve the classical Q-learning algo-

rithm for improving the load balancing in the cloud environment

by integrating improved Q-learning with MPSO to improve the

convergence rate and performance metrics for load balancing. In

this paper, we have enhanced the classical Q-learning value-

based MPSO algorithm to determine the load of each VM and bal-

ance it through the minimization of the fitness function. In this

proposed scheme, the improved classical Q-learning stores the Q-

value of the best action of the state and thus saves the storage

space, which is used to decide the Pbest and gbest of the improved

PSO in each iteration, and adjust the velocity of the MPSO. Finally,

the validation of the algorithm is studied in the simulation and real

scenarios.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

46

The remaining of the paper is outlined as follows. A review of

the state of arts for load balancing is provided in section 2. Problem

definition and formulation of the fitness function is explained in

section 3. Implementation of a hybrid meta-heuristic algorithm

for solving load balancing in cloud computing is presented in Sec-

tion 4. Experimental result and performance analysis are briefly

described in section 5 and the validation of the algorithm has been

verified by comparing the results of QMPSO with the existing algo-

rithm in this section. Conclusions and future directions are listed in

section 6.

2. Review of state of arts

Load balancing is to assign the input task among all the VMs

uniformly. The main objective of the load balancing is to remove

the overloaded tasks from one or more VMs and assigned it to

others under loaded VMs. This process improves the efficiency

and throughput of the machine. Many researchers have resolved

the load balancing problem through heuristic and meta-heuristic

approaches. Load balancing with security has been addressed in

a distributed network (Ezumalai et al., 2010). In this work, three

methodologies have been proposed to resolve the load balancing

and security in a distributed network. First, it provides architecture

for the mobile agent to wander all the nodes in a distributed net-

work. Second, it offers architecture to rearrange the load among

the peers to provide better performance and third, it provides secu-

rity in the network. A Hierarchical load balancing scheme has been

proposed to resolve the distribution of the jobs in the Grid comput-

ing environment (Malarvizhi and RhymendUthariaraj, 2009). Cur-

rent node information has been taken care of while distributing

the input task dynamically among the VMs and the benefits of

the algorithm are to reduce the average response time for Grid

application. The efficiency of the algorithm verified through the

comparison with Minimal Completion Time and Perfect Informa-

tion on Arrival. Honey bee behaviour based load balancing has

been resolved in non-pre-emptive independent tasks on VMs

(Krishna, 2013). The proposed algorithm resolves load balancing

across the virtual machines for maximizing the throughput, reduc-

ing the waiting time of tasks by considering the priorities of the

task and finally, the comparison has been carried out with other

algorithms such as weighted Round Robin, FIFO and Dynamic Load

Balancing to present the efficiency and robustness of the algorithm

in terms of throughput and reducing the response time of VMs.

Dynamic load balancing has been resolved in a distributed virtual

environment through heat diffusion (Deng and Lau, 2014). It pro-

poses two dynamic load balancing methods, first, it uses the local

and global load balancing in the distributed virtual environment

through heat diffusion and second it investigated two performance

factors such as load balancing factor and convergence threshold.

Improved version of particle swarm optimization has been pro-

posed for exercising load balancing in the cloud network (Zhu

et al., 2016). This strategy has improved the execution speed of

tasks and efficiency. Tabu search algorithm has been projected

for resource management in the cloud network (Alam et al.,

2014; Larumbe and Sanso, 2013). Dynamic optimized resource

allocation management algorithm has been proposed based on
the three factors that are deadline constraint, cost constraint and

optimum solution (Alam et al., 2014). Tabu search algorithm has

been used to resolve resource allocation through prioritization

and task grouping. Tabu search algorithm has been designed to

optimize the locations of cloud data centers and software

components such as information routing and network link

capabilities (Larumbe and Sanso, 2013). Makespan and maximum

utilization of resource have been reduced through a simple

scheduling algorithm in the grid computing environment

(Alharbi and Rabigh, 2012). It proposes a load balancing algorithm

in which load is equally distributed and minimizes the flow time to

complete tasks. Fuzzy logic has been exercised for efficient load

balancing and reduces the cost and energy in Geo-Distributed mul-

tiple data Centers (Toosi and Buyya, 2015). It shows the optimal

offline geographical load balancing through the fuzzy logic infer-

ence system by mapping input data non-linearly such as recent

utilization of renewable power, availability of electric price and

energy consumption to output for redirection of the requests by

the data center. Load rebalancing has been carried out for dis-

tributed file systems in the cloud network and this strategy also

optimizes the network traffic by maximizing the bandwidth of net-

work (Hsiao et al., 2013). Fully distributed load balancing rebalanc-

ing algorithm has been presented to resolve load imbalance and

finally, the proposed algorithm has been compared with the

existing centralized approach. An online algorithm with Lyapunov

optimization theory has been projected for load scheduling and

eco-aware power management for cloud data centers (Deng et al.,

2016). The objective of the algorithm is to minimize the time-

average eco-aware power cost of cloud data centers while ensuring

the quality-of-experience (QoE) constraint of user requests. Honey

bee algorithm has been exercised to reduce the makespan and

assign the resource to the task to improve the throughput in the

cloud environment (Vasudevan et al., 2016). It is a dynamic algo-

rithm that is used to discover the difference in nature between

dependence and independence tasks and reduce the makespan

for both the tasks by considering the priorities of tasks. The load

of the server has been balanced through self-adaptive Randomized

Optimization (Papadopoulos et al., 2016). Energy utilization has

been reduced during the assignment of resources to the task in

the cloud network (Moganarangan et al., 2016). Load prediction

and demand of resources in the future has been explained through

Enhanced Exponentially Weighted Moving Average (Lavanya and

Vaithiyanathan, 2015). Soft computing techniques have been pro-

posed to resolve the dynamic load balancing in the cloud comput-

ing environment (Mondal and Choudhury, 2015). A load

balancing strategy for cloud computing has been carried out

through a genetic algorithm (Dasgupta et al., 2013). Resource allo-

cation has been carried out in homogeneous and heterogeneous

cloud environment (Mishra, 2018). The author has also explained

the makespan and energy utilization during allocation. A static load

balancing algorithm has been proposed to solve load balancing

(Wei et al., 2011; Di et al., 2012; Chen et al., 2010; Song et al.,

2014). This static algorithm uses the static information to balance
the load without affecting the load of the cluster node and it has

the poor adaptive capability. Bayes algorithm has been imple-

mented for long term load balancing (Zhao et al., 2016). Improved

weighted round-robin algorithm has been projected to resolve load

balancing for non-pre-emptive dependent tasks (Devi and

RhymendUthariaraj, 2016). The performance of the load balancing

has been analysed through the different load balancing algorithm

and the result has been compared in terms of throughput and speed

(Kanakala and Reddy, 2015). Many scheduling algorithms have

been developed for the Map Reduce environment which con-

tributes to load balancing in cloud network (Manjaly, 2013; Patel,

2015; Selvi and Aruna, 2016). Adaptive task allocation scheduler

has been proposed to improve the performance of Map Reduce in

a heterogeneous cloud network (Yang and Chen, 2015; Bok et al.,

2016). The deadline minimizing scheduler has been proposed to

minimize the deadline of the job whose deadline has been collapsed

during the processing of large data such as video and image in Map

Reduce frameworks (Hwang and Kim, 2012). An autonomous agent

based load balancing algorithm has been presented to balance load

through VMs using three agents such as Channel agent, load agent

and migration agent (Singha et al., 2015).

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

47

 }

X
. .

. .

¼

X

Vmi

þ ¼

AL ¼ j¼0 ¼ j¼0 i¼0

 j¼0 i¼0

p

LHj ¼
X

OLji ¼
X

k1 × LMji þ k2 × LCji ð4Þ

m

3. Problem definition and formulation of objective function

Cloud computing consists of set of VMs and each VM are

responsible for scheduling and balancing the load by allocating

load of CPU on ith VM of jth host and mj represents the m number of

VMs activated in jth host physical machine. The average load on all

physical machines in cloud is calculated as follows:

Pp LHj
Pp Pmj OLji

Consider M ¼ m1; m2;m3:::mm be the set of ‘m’ number of virtual
machines in the cloud network and each machine has its own

p p
Pp Pmj k1 × LMji þ k2 × LCji

dimensional vector and each dimension presents the loads of every

resource. In this work, four types of resources have been consid-

ered such as disk, memory, CPU and bandwidth. The model of

the system is considered in this work as S number of homogeneous

servers and one is act as a central server which is responsible for

posting the request coming from VM. All the request can be

accepted by all the servers and generate equivalent VMs compris-

ing with central server. The server can only create the VM only if it

has sufficient memory which is a limitation of the system model.

There is ‘n’ number of independent tasks being executed in ‘m’

number of virtual machines. Therefore, it is requiring a better

scheduler to map ‘n’ task to ‘m’ VMs so that load will be balanced.

The main objective of the load balancing is to maximize the bal-

ance of the utilization of resources and accept as many requests.

The parameter used for single user as U (RPHPU, RS, RCPU, RM,

C) where, RPHPU indicated the number of online user request com-

ing from every time stamp on average in a user group, RS refers to

request size of each user in user group, RCPU refers to amount of
CPU required to execute the request, RM indicates the amount of

where p is the number of host in the cloud network. The difference

of load between each host and average load on Cloud network is

LHj — AL . The first fitness function is defined as

p

F1 ¼ LHj — AL ð6Þ
j¼0

The second fitness function is defined on basis of the energy

consumption of active or idle VMs. Each VMs has two states when

it is created through host or physical machine, one is active state

and other is idle state. Energy consumption (EC) and makespan

(MS) are two important parameters in cloud network for evaluat-

ing the performance. The execution time for completing the task

in each VMs are different and makespan defined the execution

time of VMs in the system. The maximum the execution time poor

in load balance and minimum of the execution time provides the

better load balancing. The execution time of the jth VM is Tj and

it is calculated based on the decision variable Uij.

memory needed to execute the request and C refers to the number

of request sent in every minute. The establishment of load balanc-

ing in cloud computing environment is required to design a fitness

Uij

1; if T i is assigned to VMj

0 if T i is not assigned to VMj

n

ð7Þ

function. On basis of group strategy, one host contains many VMs

and each VM is able to allocate resources to many groups and each

group is presented as G (RPHPU, RS, RCPU, RM, C) and after execut-

ing the group tasks by VMi, the memory load of VMi is calculated as

follows:

Tj ¼ Uij × TCij ð8Þ
i¼1

where TCij is the ithð1 6 i 6 nÞ task completion time in jthð1 6 j 6 mÞ
VM and TCij is calculated as follows:

i i Vmpi TCij ¼
 Li

 ð9Þ
LM ¼ RM þ

Vmi
× 100% ð1Þ

In the above equation the term Vmpi represents the percentage

of memory available in the ith VM and Vmi represents the percent-

age of total memory available in the ith VM. The ratio appearing in

Eq. (1) is a dimension less constant. RMi is the remaining of mem-

ory before executing tasks. The group request next parameter is

amount of CPU is required to execute the task in VMi and it is cal-

culated as follows:

LCi ¼ RCi þ
Vmci

× 100% ð2Þ

where Vmci represents the percentage of CPU available in the ith VM

PSj

where Li is the length of the ith task and length of the task is defined

in terms of number of instructions (Millions of instruction) and PSj

is the processing time of jth VM in the cloud. The makespan (MS) is

the maximum value of the execution time of all virtual machines

and mathematically defined as follows:

MS ¼ Max Tj ; 1 6 j 6 m ð10Þ

The total energy consumed is defined as the sum of the energy

consumed in the idle states and active states. Consider aj joules/

Millions of instruction consumed by jth VM in the active state

and bj joules/Millions of instruction consumed by jth VM in the idle
thstate. MS — T amount of time will be remain idle by j VM. The

and Vmi represents the percentage of total CPU available in the ith

VM. The ratio appearing in Eq. (1) is a dimension less constant.

RCi is the remaining of CPU before executing. Base on the memory

load and CPU load presented in Eq. (1) and Eq. (2), the overall load

on VMi can be calculated as follows:

OLi ¼ k1 × LMi þ k2 × LCi ð3Þ

where k1 and k2 are the weight factor and k1 k2 1, hence, the

overall load on the host j is calculated as follows:

j

mathematical representation of second fitness function in terms

of the total energy consumption is defined as follows:

F2 ¼ EC ¼
X

Tj × aj þ

MS — T j

bj

× PSj ð11Þ

The third fitness function is defined in terms of number of task

submitted to the different number of processing unit in the cloud

network and it is defined as follows:

 NIPTi

mj mj
F3 ¼ w1 ×

MNIPS
þ w2 × Li ð12Þ

i¼0

i¼0

where NIPTi represents number of instructions for ith task, this is

count of instruction in the task determined by the processor.MNIPS
where OLji represents the overall load on ith VM of jth host, LMji rep- resents the load of memory on ith VM of jth host, LCji represents the

j¼1

resources. A request of VM can be represented as a d- ¼

VMs to servers during utilization of load balance over all servers.

ð5Þ

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

48

represents maximum (total) number of instruction executed

by each processor per second,. The delay cost Li is an estimated

penalty

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

49

ð Þ

¼ ¼ ¼

ð Þ ¼3 t

atþ1

— —

ð × Þ

ð × Þ

2 t
resource grants

t t t t
a0 t

t t t t t t t

for ith task, Which Cloud service provider needs to pay to customer

in the event of job finishing actual time being more than the dead-

line advertised by the provider. w1 and w2 are the weight factor and

its value is consider as 0.7 and 0.3 respectively. The objective or fit-

ness function is formed by taking the weighted average of each

individual fitness function which will be minimized through the

proposed algorithm and it is mathematically presented as follows:

F ¼ k1 × F1 þ k2 × F2 þ k3 × F3 ð13Þ

where k1; k2 and k3 are weights of the difference of load between

each host and average load on Cloud network, total energy con-

where d is the transition function. The possible action taken in the

cloud computing related to load balance are resource withdrawing

from VM, allocating resource in VM and swap resource between

VMs. In the cloud computing the reward is calculated in the terms

of cost function and the cost function is calculated in the terms of

resources requested, resource allocated and rejected of request and

collision of requests. The reward rt at time t is calculated as follows:

rt ¼ r1n1ðstÞ þ r2n2ðstÞ þ r3n3ðstÞ ð17Þ

where n1 st successive allocation of resources and it is calculated as

follows:

sumption and number of task submitted to the different number
n ðs Þ ¼

resource grants — total collisions ð18Þ
of processing unit in the cloud network respectively. These weights 1 t

are adjusted in the simulation and preeminent values found
resource grants

k1 1; k2 0:5 and k3 0:5. So, the optimized load balance is

obtained by minimizing the fitness function in Eq. (13) with the

n2ðstÞ is rate of resource request collision occurs

n ðs Þ ¼
resouce request collision

ð19Þ

4. Hybrid meta-heuristic algorithm for load balancing

 Q-learning algorithm

n3ðstÞ represents the rate of resource request rejected

n s
resouce request rejected

resource requested

ð20Þ

Q-learning is a one of reinforcement learning algorithm in the

area of machine learning which allows the agent to learn in the

environment and perform an action by transition of state to get a

reward or penalty based on the feedback received from the envi-

ronment. The main aim of the agent is to use the control strategy

to select appropriate action from set of possible action from a spec-

ified state to the destination through the transition process of state.

When the processing enriched through repetitive steps, then the

problem is known as a Markov decision process (MDP) with

unknown probabilities of transition. Consider there are set of states

S ¼ fs1; s2; :::sng in the environment and each states have set of

actions A ¼ fa1; a2; :::amg. An agent selects an action at 2 A at time

t in the state st 2 S to transit to the next state stþ1 2 S through the

transition process and acquire an immediate reward rtþ1 from the
environment. It is necessary to select appropriate action that max-

imizes the Q-value of each state which is the main objective of

finding an optimal policy in the cloud network. The Q-value func-

tion basically depends on what is the selection criterion of action in

the particular state. Consider the agent in the state st and select an

action at which is expected to move best next state and maximize

the total expected reward in the environment, then Q-value is cal-

culated as follows:

Q ðst; atÞ ¼ ð1 — aÞQ ðst; atÞ þ a

rt þ c max Q ðstþ1; atþ1Þ

ð14Þ

where a is the learning rate, cð0 < c < 1Þ is the discount factor and

effect on the successive state by the previous action and rt is the
immediate penalty or reward received by executing the action at

on the state st. The Q-value is achieved by generating a Q-table that

stores the possible states and their Q-value and the appropriate

actions. The Q-learning algorithm recursively attempts to generate

the optimal state and system cost based on their experienced. The

following greedy strategy has been used in Q-learning algorithm

which yield the Q-value to convergence over time.

Qtþ1ðst; atÞ ¼ Qtðst; atÞ þ aDQtðst; atÞ ð15Þ

where a is the learning rate and it is calculated as follows:

a ¼ 1=1 þ total of times visited to state st

DQ ðs ; a Þ ¼

r þ a max ½Q ðdðs ; a Þ; a0]g — Q ðs ; a Þ ð16Þ

The classical Q-learning algorithm suffers with the following

drawbacks such as (1) The learning agent used for updating Q-

value of each state is based on the action executed and there is no

model to decide which action should the agent decide so that opti-

mal Q-value will generate. It may decide the action randomly and

get an optimal Q-value; (2) Every time agent fetches the memory

to get the appropriate action through the optimal Q-value of the

state; (3) the convergence speed and learning rate becomes very

slow. Classical Q-learning takes huge computation to calculate the

Q-value for all possible actions in a particular state and takes large

space to store its Q-value for all actions as a result of which its con-

vergence rate is slow. In classical Q-learning, if there are ‘n’ states

and ‘m’ action per state, then the Q-table will be of m n dimen-

sion. Due to the above flaws the classical Q-learning, the modified

Q-learning has been proposed to overcome the flaws of the classical

Q-learning. In modified Q-learning the previous actions can be

affected by the feedback of the successive states. If the action taken

by the current state is false, then the preceding actions should be

penalty otherwise the preceding actions should be rewarded. In

the modified form classical Q-learning stores the Q-value of the best

action of the state and thus saves the storage space. In the modified

Q-learning, for each state 2 storages are required, respectively for

storing Q-value and storing value of the lock variable of a particular

state. Thus for n number of states, we require a Q-table of 2 n

dimension. The saving in memory in the present context with

respect to classical Q thus is given by mn 2n = n(m 2)..Modified

Q learning algorithm is summarized below:

Algorithm 1: QUpdate(S)

1. : Initialize Q-values:

2. For i = 1 to n // n is the number of states

3. For j = 1 to p // p is number of action in each states

4. Q(si,aj) = 0

5. End for

6. End for

7. Select an action ai from A={a1, a2,.. . am} and execute it

and go to next state st+1

8. Calculate the learning factor a
9. Calculate the reward rt using Eq. (17)

10. Calculate error signal DQt(st, at) using Eq. (16)

11. Update Qt+1 (st, at) using Eq. (15)

12. Repeat the process for the new state until it converges

assigned weights of each criterion.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

50

th

—

X

ð Þ

ð Þ

¼

P

P
pastV ðtÞ ¼ pastV

 ðtÞi ðði—NþR—1ÞωprtþkÞ

tmax

ij ij 3 2

 Modified PSO (MPSO)

The classical PSO is bio-inspired population based optimization

algorithm. In PSO, each member in the population is called particle

and set of particles in the population is called swarm and it

updates the position and velocity of each particles based on the fol-

lowing principles.

Viðt þ 1Þ ¼ ViðtÞ þ C1:/1 :ðpbestiðtÞ — xiðtÞÞ

fitness and replace it by initializing the new agents with the surviv-

ing agents in the population. Each new agent ‘Naget’ in the swarm

acts as a parent and past velocities and average position of parents

are used to initializing the new agent in the population. This is pos-

sible by mutation of randomly selected agent and followed by the

following mutation equation:

x ¼ x þ u

ubj — lbj

ð27Þ

þ C2:/2:ðgbestðtÞ — xiðtÞÞ ð21Þ

xiðt þ 1Þ ¼ xiðtÞ þ Viðt þ 1Þ ð22Þ

where ViðtÞ is the velocity of the ithð1 6 i 6 NÞ agent at iteration t,

xiðtÞ is the position of ith agent at iteration t, pbestiðtÞ is the personal

best position of the i agent at iteration t, gbest ðtÞ is the best posi-

where u3 is the random number in the range of [1,1]. ub and lb are

the upper and lower boundary and its value depends upon the

number of task between 100 and 2000 and i is the particle in the

swarm. In modified PSO, the updated particle position in Eq. (22)

is defined by adding the velocity of particle obtained from Eq. 23

with the position of the particle obtained through mutation using

Eq. (27).

tion of the agent in the swarm at iteration t, C1 and C2are the social

and cognitive factor whose values are positive, /1 and /2 are the

random numbers in the range of 0 and 1.

The classical PSO needs to improvement for better convergence

and maintain the good balance between exploration and exploita-

tion. The improvement of PSO has been presented below.

tmax

V iðt þ 1Þ ¼ ½ccði; tÞpastV iðtÞ] þ C1:/1:ðpbest iðtÞ — xiðtÞÞ
t¼1

þ C2:/2:ðgbestðtÞ — xiðtÞÞ ð23Þ

where cc i; t is the correlation coefficient which is updated based
th

Procedure QMPSO for load balancing

Input: N is population size, R = N/10 and Prt = N/8

1. Initialize Swarm size of VMs and control parameters

2. While stopping condition not reached

3. For i ¼ 1 to N

4. oldfiti ¼ fiti
5. Evaluate fiti

6. End for

7. For t ¼ 2 to tmax

8. ccði; tÞ ¼ ccði; t — 1Þ ω CCDF

9. pastViðtÞ ¼ pastViðt — 1Þ
on the fitness value of the i agent at iteration t as per the following

expression:
10. If oldfiti > fiti then

11. ccði; 1Þ ¼ cclow

cchigh if Fðt þ 1Þ > FðtÞ 12. else

ccði; tÞ ¼
cclow otherwise

ð24Þ 13. ccði; 1Þ ¼ cchigh

14. pastViðtÞ ¼ ViðtÞ

ccði; tÞ equal to cchigh, if the current fitness value is better than the

previous fitness value of the ith agent, otherwise its value will be

cclow. The value of cchigh and cclow for the present problem are con-

sidered as 0.8 and 0.35 respectively. This helps the agent to move

in the direction in which it finds the better fitness value. The cor-

relation coefficient is multiplied with the previous velocity in each

iteration to represent the weight of the previous velocity in the

update equation of the present velocity. In each iteration the value

of cc is corresponding to a particular previous velocity is multiplied

by correlation coefficient depletion factor (CCDF) to reduce its

effect in the successive velocity and CCDF value is consider as 0.5

in this problem.pastVi t is the past velocity of the ith agent at iter-

ation t. Particle leads to a local optimum when the social compo-

nent value C2 is more as compared to the cognitive component

C1 and comparatively great value of cognitive components out-

15. End if

16. Call Qupdate(pbestÞ

17. Call Qupdate(gbestÞ

18. Call Qupdate(xiÞ

19. IfQ ðxiÞis better than Q ðpbestiÞ

20. pbesti ¼ xi

21. If Q ðxiÞis better than Q ðgbestÞ
22. gbest xi

23. End for

24. Sort the swarm in decreasing order of their fitness value

25. For i ¼ N — R þ 1 to N

26. For t ¼ 2 to tmax

27. ccði; tÞ ¼ cclow

28. pastViðtÞ ¼ 0

29. ccði; tÞ ¼ cchigh

comes to roam the particles around the search space. The quality 30. prt
xi ¼ 1 x i—NþR—1ÞωprtþkÞ

of the solution is enhanced by adapting cognitive and social coeffi-

cient term in such a manner that the cognitive component is

31.

prt ðð
k¼1

prt

decreased and social component is increased as iteration proceeds.

The variation of the coefficients is offered (for tth generation) by

means of the following Eq. (25) and Eq. (26).

C1 ¼ C1i —

C1i — C1f

t ð25Þ

1
prt

k¼1

32. Mutate xi using Eq. (27)

33. End for

34. End for

35. For i ¼ 1 to N

36. Update ViðtÞ and xi using Eq. (23) and Eq. (22)

C2 ¼ C2i þ
C2f — C2i t

tmax
ð26Þ

respectively

37. End while

where C1i; C1f ; C2i and C2f are initial and final values of cognitive

and social component acceleration factors respectively and tmax is

the maximum number of allowable iterations. To avoid the stagna-

tion problem, it is required to replace the worst fitness value agent

by new agents. Consider S number of agent are performing worst

The complexity of the algorithm is computed in three different

phases such as making a group of the task into each VMs, schedul-

ing for each individual group and allocating VMs for the task. When

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

51

× ð Þ ≈ ð Þ

n number of the task is submitted to the data center, the task sched-

uler collects the information from the task manager and resource

manager to create the appropriate groups. The submitted n tasks

are split into p number of groups of tasks based on their fitness

value. Hence, the complexity for making into different groups is O

(n). The scheduling for each individual group, QMPSO takes O(n2)

to schedule n submitted tasks of each p number of groups. So

QMPSO repeats the process p times to schedule n task of each group

Table 1

Simulation environment.

Type Number Parameters Value

Data center 1 Arch x86

 OS

VM Monitor

Cost

Linux

Xen

3.0
 Cost Per Memory 0.05

 Cost per Storage 0.001

VM 10 to 100 Processor speed

Memory

Bandwidth

Image size

9726MIPS

0.5 GB

1 GB/s

10 GB

 Mumber of PEs

VM Monitor

1

Xen

Host 20 MIPS

Storage

VM Monitor

RAM

Bandwidth

177,730

4.0 TB

Xen

16.0 GB

15 GB/s

 Cores 6

is p × O n2 ≈ O n2 . QMPSO balance the loads overall m number of

resources. So, the algorithm migrates the task from the heaviest

loaded VM to lighted loaded VM. Therefore, the complexity of bal-

ancing load is m O n O n . The overall complexity of the algo-

rithm QMPSO is O

n þ n2 þ n

≈ O

n2

.

5. Experimental results and performance analysis

The performance of the proposed algorithm has been analysed

based on the results of the simulation. The cloud computing exper-

iment has been carried out through the CloudSim3.0.3 simulator

and this simulator runs on the machine with the configuration of

Intel core i7 processor, 8 GB RAM, 3.4 GHz CPU and Window 7 plat-

form. The simulation environment of the experiments has been

presented in Table 1. The performance of the algorithm has been

analysed in the form of the number of tasks migrated, the response

time of tasks, delayed in all tasks, idle time of tasks, makespan

before load balance and after load balance through modified PSO

and Improve Q-learning. Two types of scenarios have been consid-

ered for validation of the algorithm. In the first scenario, fixing the

number of VMs (1 0 0) which are created from 10 real processors

and varying the number of tasks from 100 to 2000 in the interval

of 50 and the second scenario, fixing the number tasks (1000)

and varying the number of VMs from 10 to 100 in the interval of
50. Based on the above two scenarios the performance of the algo-

rithm has been analysed. The performance of the algorithm has

been analysed in terms of Makespan, energy utilization, standard

deviation which measures the effect of load balance, Throughput

which measures the effective performance of the external services,

Table 2

Influence of parameters for Load balance in cloud computing.

Weights Performance Analysis and Convergence rate

 k1 k2 k3 Makespan (In ms) Throughput (req/ms) Standard deviation (SD) Energy utilization (In KJ) Load Balance (yes/No)

 1 0.9 0.9 9671.36 9.18 0.389 312.52 yes

 0.8 9416.33 8.79 0.376 301.39 yes

 0.7 9281.51 8.62 0.366 297.36 yes

 0.6 9072.19 8.41 0.427 291.29 yes

 0.5 8962.91 8.13 0.391 285.71 yes

 0.4 8852.63 7.89 0.362 271.43 yes

 0.8 0.9 9428.17 8.89 0.378 253.72 yes

 0.8 9389.14 8.75 0.367 247.39 yes

 0.7 9161.31 8.39 0.342 233.87 yes

 0.6 9051.29 8.19 0.317 227.31 yes

 0.5 8942.81 7.95 0.298 219.37 yes

 0.4 8828.35 7.67 0.289 213.29 yes

 0.7 0.9 9175.37 8.56 0.359 298.15 yes

 0.8 9132.74 8.41 0.321 291.67 yes

 0.7 9194.89 8.67 0.339 292.45 yes

 0.6 9013.54 8.14 0.312 287.40 yes

 0.5 8583.71 8.04 0.298 279.19 yes

 0.4 8239.61 7.43 0.279 268.41 yes

 0.6 0.9 9087.41 8.28 0.313 267.19 yes

 0.8 8794.51 8.07 0.298 263.81 yes

 0.7 8663.95 7.89 0.287 259.31 yes

 0.6 8532.13 7.45 0.259 253.30 yes

 0.5 8374.30 7.24 0.238 247.52 yes

 04 8139.37 7.67 0.265 251.97 yes

 0.5 0.9 8894.51 7.39 0.275 243.19 yes

 0.8 8467.92 7.18 0.174 239.37 yes

 0.7 8135.29 6.74 0.096 228.36 yes

 0.6 7954.64 5.83 0.082 218.42 yes

 0.5 7791.32 5.46 0.067 173.87 yes

 0.4 8534.78 6.34 0.276 204.56 yes

 0.4 0.9 8429.49 7.98 0.373 256.72 yes

 0.8 8321.82 7.39 0.314 248.30 yes

 0.7 8148.29 7.12 0.274 229.58 yes

 0.6 8093.21 6.87 0.238 212.29 yes

 0.5 7930.62 6.45 0.208 189.43 yes

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

52

 0.4 7832.31 6.23 0.136 182.64 yes

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

53

¼ ¼

Fig. 2. Number of tasks with Energy utilization for fixed number of VMs.

Fig. 3. Number of VMs with Energy utilization for fixed number of Tasks.

Tasks migrated measures the performance of cloud and Quality of

services (QoS), Degree of imbalance, Idle time which measures the

waiting time of tasks and Processing time of tasks based on the

computing power of VMS. The experiment has been conducted

through the fitness function which has been presented in Eq.

(13) and the weight of the fitness value has been decided through
the exercise of different values which has been presented in
Table 2. The optimal value found for the weight of the fitness func-

tion after the exercise of the simulation as k1 ¼ 1:0;

k2 0:5; and k3 0:5 . The performance has been found out

by the varying the number of tasks and VMs. The energy utilization

during load balancing by varying tasks and VMs has been pre-

sented in Fig. 2 and Fig. 3 respectively for three different algo-

rithms such as QMPSO, MPSO, and Q-Learning. The conclusion is

drawn from Fig. 2 and Fig. 3 that QMPSO takes the least amount

of energy during load balance as compared to its competitors.

The performance has been exercised in terms of makespan. Make-

span evaluates the response time of the user for a particular task

and respond time affect the QoS in cloud computing, as a result,

the service provider can promise the QoS to the client. Makespan

has presented in Fig. 4 and Fig. 5 by varying tasks and VMs respec-

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

54

Fig. 4. Number of VMs with Makespan fixed number of
Tasks.

Fig. 5. Number of Tasks with Makespan fixed number of
VMs.

Fig. 6. Time with standard Deviation for QMPSO, MPSO and Q-Learning.

tively. The conclusion is drawn from Fig. 4 and Fig. 5 that it

shrinks into a noteworthy amount in QMPSO as compared to

MPSO and Q-Learning. Hence, QMPSO achieved the stability

and load balance efficiently through the comparison of Energy

utilization and make- span with its counterpart algorithm. The

load balance has been evaluated through the standard

deviation and standard deviation

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

55

Fig. 7. Number of Tasks Migrated with Number of Tasks for QMPSO, MPSO and Q-

Learning.

Fig. 8. Time with Throughput for QMPSO, MPSO and Q-Learning.

Fig. 9. Number of tasks with Degree of Imbalance before and after load balance.

presents the degree of load balance in the could network. The

smaller the value of standard deviation indicated better in balanc-

ing of the load. The performance of load balancing has been exer-

cised in terms of standard deviation and it has been presented in

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

56

≥

Fig. 6. Fig. 6 shows that initially, the standard deviation value of

QMPSO is small as compared to MPSO and Q-Learning and gradu-

ally it decreases. At time t = 3700 ms standard deviation value is

the same for QMPSO and MPSO. However, when t 3700, it decli-

nes the degree of Standard deviation of MPSO is greater than

QMPSO. This is because the proposed QMPSO gets optimal

resources rapidly permitting the residual computing power. The

conclusion is drawn from the analysis that the QMPSO approach

has better resource utilization capability and efficient load

balanc- ing as compared to its competitors. The performance has

been evaluated in terms of task migrated. The task is migrated

because of not getting the requested resource on the physical

host. Task migrated with the number of tasks has been evaluated

and pre- sented in Fig. 7. Fig. 7 shows that the number of

tasks migrated for QMPSO is less as compared to MPSO and Q-

Learning. The load balance has been evaluated through the

throughput, throughput is used to evaluate the performance of

the external service such as availability of resources to deal with

the requested task, ability of transmitting data and ability of

responding requested tasks, etc. the result of the experiment has

been presented in Fig. 8 for throughput analysis. QMPSO.
Fig. 8 shows that the performance of external service for

Q-learning is better than its counterpart at the initial stages, as

time increases the performance of the external service is

stable, it is same for three algorithms when t = 1700 and

gradually, the

Fig. 10. Number of VMs with Idle Time for all tasks for QMPSO, MPSO and Q-

Learning.

Fig. 11. Processing Power of VMs with Time required for all tasks for QMPSO, MPSO

and Q-Learning.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

57

Table 3

Analysis of performance for QMPSO, MPSO and Q-Learning.

Algorithm Makespan (In ms) Throughput (req/ms) Standard deviation (SD) Energy utilization (In KJ) Task Migrated

 for fixed VMs (300) for fixed Tasks (2000) for fixed VMs for fixed Tasks

QMPSO 7791.30 2389.00 5.46 0.067 173.80 222.45 397

MPSO 8051.70 2966.60 3.81 0.165 188.28 239.56 601

Q-Learning 8335.50 3588.00 3.15 0.278 230.21 256.67 695

performance of the external service for QMPSO is better than MPSO

and Q-Learning. This is because of the physical hosts chosen in the

set by QMPSO has achieved the demand of the requested tasks. The

conclusion is drawn from this analysis that QMPSO has acquired

better efficiency and stability as compared to its counterpart algo-

rithm. Load balancing reduces the degree of imbalance (the better

the load balance less the degree of imbalance). Load balance basi-

cally depends on the number of the task requested for accruing

resources available in the physical host. Exercise has been carried

to present the degree of Imbalance before the execution of the pro-

posed algorithm and after the execution of the proposed algorithm

and it has been presented in Fig. 9. The conclusion is drawn from

Fig. 9 that the degree of Imbalance is least after exercise of idle

time of the tasks increases due to the allocation of more tasks in

single high processing power VMs. The waiting time tasks are more

if only one task is allowed to execute at the same time other tasks

allow us to wait in the ready queue for execution. If the processing

power of VMs is more and number VMs are allocated, then the

waiting time of all tasks will be less. The Idle time of the tasks

and processing time of VMs has been presented in Fig. 10 and

Fig. 11 respectively. Fig. 10 shows that idle time for all tasks is less

for QMPSO as compared to MPSO and Q-Learning. The processing

power of VMs has been presented in Fig. 11. The processing power

has been increased from 200MIPS to 2500 MIPS, as a result, the

processing time of the tasks has been deduced to 9500 ms to

102 ms. The conclusion is drawn from the analysis that QMPSO

effectively and efficiently balances the load in the cloud network.

The comparison has been carried out with its counterpart algo-

rithms and the result has been presented in Table 3. The conclusion

shows that the QMPSO is outperformed MPSO and Q-learning in

load balancing of tasks in the cloud network.

The robustness of the algorithm has been verified in the real

platform. In the real platform, the cloud data center consists of 4

hosts, each host capable of supporting virtualization technology.

The detail of the host specification used in the experiment has been

presented in Table 5. In this experiment, we have considered 16

VMs for executing the different groups of tasks ranges from 20 to

80 in the 4 hosts. Each VM consists of 9226 MIPS of Processing

speed, 512 MB of RAM, 10240 MB of storage space and 1024MIPS

of bandwidth. The experiment and simulation have been con-

ducted through 4 hosts and 16 VMs with the specification as pro-

vided in Table 4. Performance evaluated through the experiment

and simulation has been presented in Table 5. It shows that the

proposed QMPSO algorithm outperforms than its competitors

and the percentage of error in QMPSO is less as compared with

other algorithms.
The effectiveness and robustness of the proposed algorithm

QMPSO have been verified through the exiting algorithm IPSO

(Saleh et al., 2018). The author (Saleh et al., 2018) proposed task

scheduling in the cloud computing environment through an

improved version of Particle swarm optimization called IPSO.

Improve version of PSO(IPSO) is projected to afford the optimal

allocation for a large number of tasks and it is accomplished by

splitting the submitted tasks into several batches through a

Table 4

Host technical details.

Host ID Processing Cores Speed, MIPS RAM, MB Storage, MB BW, MIPS

1 4 6000 204,800 1,048,576 102,400

2 3 4500 152,400 1,048,576 102,400

3 2 3500 102,400 1,048,576 102,400

4 1 2000 51,200 1,048,576 102,400

Table 5

Comparison of simulation and real platform result.

In Real Platform In Simulation % of

 VM TASK Algorithm Makespan

(in Sec.)

No. of Task

Migrated

Throughput

(req/ms)

Energy

utilization

Completion

Time

 Makespan No. of Task

(in Sec.) Migrated

Throughput

(req/ms)

Energy

utilization

Completion

Time

Erro r

 16 20 QMPSO 2.56 3 1.7 87.20 3.25 2.30 3 1.53 78.4 2.92 10

 30 2.87 5 3.08 100.02 3.95 2.58 5 2.77 89.9 3.55

 40 3.15 6 4.13 147.2 4.51 2.83 6 3.71 132.4 4.05

 60 3.47 8 5.54 185.9 5.95 3.12 8 4.98 167.3 5.35

 80 4.02 10 6.47 236.7 7.02 3.61 10 5.82 213.0 6.31

 20 MPSO 2.71 5 2.34 90.12 3.45 2.57 5 2.22 85.61 3.2 20

 30 3.9 7 3.5 105.2 4.02 3.70 7 3.32 99.94 3.8

 40 5.1 9 4.9 135.3 4.91 4.84 9 4.65 128.5 4.66

 60 7.6 12 6.02 194.6 6.02 7.22 12 5.71 184.7 5.71

 80 12.6 14 8.30 242.7 7.95 11.9 14 7.8 230.5 7.55

 20 Q-Learning 4.21 4 2.14 101.2 3.97 4.05 4 2.06 97.45 3.82 27

 30 5.5 6 3.36 119.3 4.82 5.29 6 3.23 114.8 4.64

 40 6.4 8 4.91 155.6 5.96 6.16 8 4.72 149.8 5.73

 60 8.1 11 6.25 193.24 7.98 7.8 11 6.01 186.0 7.68

 80 12.27 15 8.45 235.6 9.03 11.81 15 8.13 226.8 8.67

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

58

Table 6

Comparison of the simulation result of QMPSO with (Saleh et al., 2018) by varying

number of task up to 1000 with fixed number VM.

Performance matrices QMPSO IPSO

Makespan (In Sec) 5.8 167

Standar deviation 0.9 16

Degree of Inbalance 35 17

Idle time of the tasks (In Sec) 8.2 Not evaluated

Throughput (req/ms) 5.3 Not evaluated

Tasks Migrated 165 Not evaluated

Time required for all tasks (In Sec.) 8.5 Not evaluated

Energy utilization (In KJ) 165 Not evaluated

dynamic strategy. The utilization of resources is based on each for-

mation batches and after getting the sub-optimal solution for each

batch, the algorithm combines all sub-optimal solutions of batches

into the final allocation map. Lastly, IPSO attempts to balance load

based on the final allocation map. The efficiency of the algorithm

has been evaluated in the terms of the degree of imbalance, the

standard deviation of load and makespan. The comparison of the

QMPSO with the existing algorithm IPSO has been presented in

Table 6. It is noted from Table 6 that the proposed QMPSO algo-

rithm is outperformed (Saleh et al., 2018).

6. Conclusions and future direction

In this paper, the hybrid meta-heuristic algorithm such as

QMPSO has been proposed for load balancing for independent

tasks in the cloud computing network. The proposed algorithm

balances the load by reassigning the load to the appropriate VMs

by considering the fitness value of each VMs. The proposed algo-

rithm also improves the makespan, throughput, energy utilization

during load balancing and reduces the waiting time of the tasks

effectively as compared to separated algorithms such as MPSO

and Q-learning. At last, we have also compared our proposed algo-

rithm with the existing algorithm and found that our proposed

algorithm outperforms the existing algorithm. In the future, the

load balancing will be carried out among the dependent tasks

dynamically.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

References

Ezumalai, R., Aghila, G., Rajalakshmi, R., 2010. Design and architecture for efficient

load balancing with security using mobile agents. Int. J. Eng. Technol. (IACSIT) 2

(1), 149–160 [Online].

Malarvizhi, N., RhymendUthariaraj, V., Hierarchical load balancing scheme for

computational intensive jobs in Grid computing environment, in: Advanced

Computing, 2009. ICAC 2009. First International Conference on, 13–15 Dec,

2009, pp. 97–104.

Krishna, P. Venkata, 2013. Honey bee behavior inspired load balancing of tasks in

cloud computing environments. Appl. Soft Comput. 13 (5), 2292–2303.

Deng, Y., Lau, R.W., 2014. Dynamic load balancing in distributed virtual

environments using heat diffusion. ACM Trans. Multimedia Comput.

Commun. Appl. (TOMM) 10 (2), 16.

Zhu, Y., Zhao, D., Wang, W., and He, H. (2016, January) ’A Novel Load 460 Balancing

Algorithm Based on Improved Particle Swarm Optimization in Cloud Computing

Environment’, In International Conference on Human Centered Computing,

Springer, pp. 634–645.

Alam, M.I., Pandey, M., Rautaray, S.S., 2014. A proposal of re-source allocation

management for cloud computing. Int. J. Cloud Comput. Services Sci. 3 (2), 79–

86.

Alharbi, F., Rabigh, K.S.A., 2012. Simple scheduling algorithm with load balancing

for grid computing. Asian Trans. Comput. 2 (2), 8–15.

Toosi, A.N., Buyya, R., 2015, December. A Fuzzy Logic-based Controller for Cost and

Energy Efficient Load Balancing in Geo-Distributed Data Centers. In: 2015 IEEE/

ACM 8th International Conference on Utility and Cloud Computing (UCC), pp.

186–194.

Hsiao, H.C., Chung, H.Y., Shen, H., Chao, Y.C., 2013. Load rebalancing for distributed

file systems in clouds. IEEE Trans. Parallel Distrib. Syst. 24 (5), 951–962.

Deng, X., Wu, D., Shen, J., He, J., 2016. Eco-aware online power management and

load scheduling for green cloud datacenters. IEEE Syst. J. 10 (1), 78–87.

Vasudevan, S.K., Anandaram, S., Menon, A.J., Aravinth, A., 2016. A novel improved

honey bee based load balancing technique in cloud computing environment.

Asian J. Information Technol. 15 (9), 1425–1430.

Papadopoulos, A.V., Klein, C., Maggio, M., Drango, J., Dellkrantz, M., Hernndez-

Rodriguez, F., et al., 2016. Control-based load balancing techniques: analysis

and performance evaluation via a randomized optimization approach. Control

Eng. Pract. 52, 24–34.

Moganarangan, N., Babukarthik, R.G., Bhuvaneswari, S., Basha, M.S., Dhavachelvan,

P., 2016. A novel algorithm for reducing energy consumption in cloud

computing environment: Web service computing approach. J. King Saud

Univ.-Comput. Information Sci. 28 (1), 55–67.

Lavanya, M., Vaithiyanathan, V., 2015. Load prediction algorithm for dynamic

resource allocation. Indian J. Sci. Technol. 8 (35), 1–4.

Mondal, B., Choudhury, A., 2015. Simulated annealing (SA) based load balancing

strategy for cloud computing. (IJCSIT) Int. J. Comput. Sci. Information Technol. 6

(4), 3307–3312.

Larumbe, F., Sanso, B., 2013. A tabu search algorithm for the location of data centers

and software components in green cloud computing networks. IEEE Trans.

Cloud Comput. 1 (1), 22–35.

Dasgupta, K., Mandal, B., Dutta, P., Mandal, J.K., Dam, S., 2013. A genetic algorithm

(ga) based load balancing strategy for cloud computing. Procedia Technol. 10,

340–347.

Mishra, Sambit Kumar, Sahoo, Bibhudatta, Parida, PritiParamita, 2018. Load

balancing in cloud computing: a big picture. J. King Saud Univ.-Comput.

Information Sci.

Wei, Q., Xu, G., Li, Y., Research on cluster and load balance based on Linux virtual

server. In: Proc. Inf. Comput. Appl., 2011, pp. 169–176.

Di, Y., Wang, S., Sun, X., A dynamic load balancing model based on negative

feedback and exponential smoothing estimation. In: Proc. 8th Int. Conf.

Autonomic Auton. Syst., Mar. 2012, pp. 32–37.

Chen, W., Zhang, Y., Xiong, Z., 2010. Research and realization of the load balancing

algorithm for heterogeneous cluster with dynamic feedback. J. Chongqing Univ.

33 (2), 2–14.

Song, S., Lv, T., Chen, X., Feb. 2014. Load balancing for future internet: an approach

based on game theory. J. Appl. Math. 2014, (2014) 959782.

Zhao, J., Yang, K., Wei, X., Ding, Y., Hu, L., Xu, G., 2016. A heuristic clustering-based

task deployment approach for load balancing using Bayes theorem in cloud

environment. IEEE Trans. Parallel Distrib. Syst. 27 (2), 305–316.

Devi, D. Chitra, RhymendUthariaraj, V., 2016. Load balancing in cloud computing

environment using improved weighted round robin algorithm for

nonpreemptive dependent tasks. Scientific World J. 2016.

Kanakala, V.R.T., Reddy, V.K., 2015. Performance analysis of load balancing

techniques in cloud computing environment. TELKOMNIKA Indones. J. Electr.

Eng. 13 (3), 568–573.

Manjaly, J.S., 2013. Relative study on task schedulers in HadoopMapReduce. Int. J.

Adv. Res. Comput. Sci. Softw. Eng. 3 (5).

Patel, H.M., 2015. A comparative analysis of MapReduce scheduling algorithms for

Hadoop. Int. J. Innov. Emerg. Res. Eng. 2 (2).

Selvi, R.T., Aruna, R., 2016. Longest approximate time to end scheduling algorithm

in Hadoop environment. Int. J. Adv. Res. Manag. Archit. Technol. Eng. 2 (6).

Yang, S.J., Chen, Y.R., 2015. Design adaptive task allocation scheduler to improve

MapReduce performance in heterogeneous clouds. J. Netw. Comput. Appl. 57, 61–

70.

Bok, K., Hwang, J., Jongtae Lim, J., Kim, Y., Yoo, J., 2016. An efficient MapReduce

scheduling scheme for processing large multimedia data. Multimed. Tools Appl.,

1–24

Hwang, Eunji, KyongHoon Kim, 2012. Minimizing cost of virtual machines for

deadline-constrained mapreduce applications in the cloud. In: Proceedings of

the 2012 ACM/IEEE 13th International Conference on Grid Computing. IEEE

Computer Society.

Singha, A., Juneja, D., Malhotra, M., 2015. Autonomous Agent Based Load-balancing

algorithm in Cloud Computing. International Conference on Advanced

ComputingTechnologies and Applications (ICACTA), 45, 832–841.

Saleh, H., Nashaat, H., Saber, W., Harb, H.M., 2018. IPSO task scheduling algorithm

for large scale data in cloud computing environment. IEEE Access 7, 5412–5420.

http://refhub.elsevier.com/S1319-1578(19)30926-7/h0005
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0005
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0005
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0015
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0015
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0020
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0020
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0020
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0030
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0030
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0030
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0035
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0035
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0045
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0045
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0050
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0050
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0055
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0055
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0055
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0060
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0060
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0060
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0060
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0065
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0065
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0065
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0065
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0070
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0070
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0075
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0075
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0075
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0080
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0080
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0080
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0085
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0085
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0085
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0090
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0090
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0090
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0105
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0105
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0105
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0110
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0110
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0115
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0115
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0115
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0120
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0120
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0120
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0125
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0125
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0125
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0130
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0130
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0135
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0135
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0140
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0140
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0145
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0145
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0145
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0145
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0150
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0150
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0150
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0165
http://refhub.elsevier.com/S1319-1578(19)30926-7/h0165

