
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

15

G-TSC: GPU Synchronization Independent

Connectivity

Mr.Sakti Charan Panda
1
*, Mr.Alok Kumar Pattnaik

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 sakticharan@thenalanda.com*, alokkumar@thenalanda.com

Abstract— In the context of chip multiprocessors, substantial
research on cache coherence has been conducted (CMP). It is
generally known that when the number of hardware thread
contexts rises, conventional directory-based and snooping
coherence algorithms generate a significant amount of coherence
traffic. Since GPUs may support hundreds or even thousands of
threads, using traditional coherence techniques on GPUs will
make the bandwidth problems already present on GPUs worse.
Previous research has suggested time-based coherence
procedures in recognition of this restriction. The main concept is
to give the accessed cache block a lease duration, and when the
lease ends, the cache block self-invalidates. Yet, global
synchronised clocks are necessary for time-based coherence
protocols. Furthermore, because threads must wait to retrieve
data with an unused timeout, this strategy might result in more
execution delays. Recently, the timestamp-based coherence
protocol known as Tardis was put forth to do away with the
necessity for global clocks in CPUs. This study expands on
earlier research and suggests G-TSC, a revolutionary timestamp-
based cache coherence mechanism for GPUs. Coherence
transactions are carried out by G-TSC in logical time. The
difficulties in implementing timestamp coherence for GPUs with
unique microarchitecture features and significant thread
parallelism are shown in this paper. The following section of this
work offers a variety of solutions to problems that are GPU-
centric. G-performance TSC's in the GPGPU- Sim simulation
framework is evaluated, and it outperforms time-based
coherence with release consistency by 38%.

Keywords-GPU; Cache Coherence

I. INTRODUCTION

Graphics processing units (GPUs) have been widely used in

high throughput general purpose computing because of their

high power efficiency , computational power, and high off-

chip memory bandwidth [1], [2]. As the GPU programming

languages, such as OpenCL [3] and NVIDIA CUDA [4],

enhance their capabilities GPUs are becoming a better com-

puting platform choice for general purpose applications with

regular parallelism. Prior study has argued that GPUs can

also accelerate applications with irregular parallelism [5]. But

porting an irregular parallel application to GPUs is currently

hobbled by the lack of efficient hardware cache coherence

support. If hardware cache coherence is provided on GPUs, it

would enable efficient porting of a broad range of parallel

applications. Cache coherence can be used as a building

block to design memory consistency models and enable a

programmer to reason about possible memory ordering when

threads interact.

At the architecture level, most of the GPUs currently achieve

cache coherence by disabling private caches and relying on

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

16

flags [6], [7]) while AMD GPUs support coherent

instructions that perform memory operations at the shared L2

cache and allow the software to flush the private cache at

anytime [8]. Obviously, such approaches provide coherence

but at the cost of performance loss stemming from disabling

caches. With an ideal coherence mechanism, GPU

applications that requires cache coherence can achieve up to

88% performance improvement over disabling L1 cache [9].

Recently, Temporal Coherence (TC) has been proposed for

GPUs [9]. TC relies on self-invalidation of expired blocks in

the private cache to eliminate coherence traffic due to inval-

idation requests. TC is inspired by Library Cache Coherence

(LCC) [10], a time-based hardware coherence protocol that

uses global synchronized counters to track the validity of

cache blocks at different levels in the cache hierarchy and

delays updates to unexpired blocks until all private copies are

self- invalidated.

Unfortunately, TC suffers from several drawbacks. First,

the use of global synchronized counters in TC to implement

coherence raises an issue about the scalability. With the rapid

growth in chip size and the increase in clock speed, the

global counters can suffer from clock skewness and wiring

delay that may affect the correctness of the protocol [11].

Second, delayed updates due to unexpired cached copies

result in execution stalls that do not happen in conventional

cache coherence protocol. When an update is delayed, all

subsequent reads are delayed until the update is

performed. Preserving all cache blocks that are unexpired in

L2 cache may cause unnecessary cache stalls due to higher

hardware resource contention. Third, in TC, the

performance can be sensitive to the lease period; a suitable

lease period is not always easy to select/predict.

Tardis is a new CPU coherence protocol based on

timestamp ordering [12]. It uses a combination of physical

time and logical time to order memory operations. The key

difference between Tardis and TC is that Tardis enforces

global memory order by logical time rather than physical

time. The timestamp based approach can largely eliminate the

drawbacks of TC. While Tardis was explored in the context

of CPU its applica- bility to a GPU’s unique architecture and

execution model are unknown.

In this paper, we propose G-TSC, a timestamp-based cache

coherence protocol for GPUs, inspired by the Tardis. We

analyze the unique challenges in adopting the logical times-

tamp ordering approach to the highly threaded GPUs and

then present and evaluate solutions. These challenges

include con-

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

17

trolling the accessibility of the updated data within a streaming

multiprocessor (SM), managing the replicated requests from

warps in the same SM, and relaxation of the cache inclusion

requirement in order to increase the effective cache size. We

show how to resolve these challenges in the presence of a

large number of concurrent threads in a single SM that can

generate a huge number of memory requests in a short time

window, and in the absence of the write buffers which are

traditionally used to facilitate these interactions in CPUs. We

specify the complete operations of G-TSC based on a general

GPU memory hierarchy. We consider the implementation of

both Release Consistency (RC) and Sequential Consistency

(SC) based on G-TSC. We implemented G-TSC in GPGU-

Sim [13] and used twelve benchmarks in the evaluation.

When using G-TSC to keep coherence between private caches

and the shared cache, G-TSC outperforms TC by 38% with

release consistency. Moreover, even G-TSC with sequential

consistency outperforms TC with release consistency by 26%

for benchmarks that require coherence. The memory traffic is

reduced by 20% for memory intensive benchmarks.

The rest of this paper is organized as follows. Section II

gives a brief background about the GPU architecture, memory

system, memory consistency models, and cache coherence

protocols. Section III proposes G-TSC. Section IV describes

the implementation of G-TSC. Section V presents several

GPU-specific challenges. The evaluation results are discussed

in Section VI. Some other related works are discussed in

Section VII and Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Basic GPU Architecture

CPU launches a GPU kernel after its input data is transferred

to the GPU memory. The kernel consists of 3-dimensional

grid of thread blocks, called Cooperative Thread Array (CTA),

or work group where each thread block in turns consists of

a 3-dimensional grid of threads or work items. Each thread

block is assigned to a Streaming Multiprocessors (SM) that

executes groups of threads (typically 32 threads) using the

single instruction multiple thread (SIMT) paradigm. All the

threads in a single group form a warp or wavefront [14].

Typically, a single GPU consists of dozens of SMs.

GPU applications have three memory spaces: local, private,

and global memory space. Local memory (also called shared

memory) is managed by the programmer and used for intra-

CTA communication [14]. Private memory is a per-thread

memory while the global memory is shared across all threads

in the kernel. Local memory is not cached by the multi-

level cache hierarchy while private and global memory are

stored in the off-chip DRAM and can be cached [7]. Accesses

by multiple threads in the same warp are merged into the

minimum number of accesses by the coalescing unit in each

SM.

The cache hierarchy in GPUs consists of a per-SM L1

private cache and a shared L2 cache. GPU caches adopt non-

inclusive, non-exclusive cache policy with no coherence

support for private caches [6]. L2 cache is divided into multiple

banks and each bank is attached to a GDDR memory partition.

The SMs are connected to multiple L2 cache banks over an

interconnection network [15]. The cache misses are managed

using miss status handling registers (MHRs). The MSHR table

holds the information about all outstanding miss requests and

allows a single outstanding read request per cache block.

Since the interconnection network bandwidth is a performance

bottleneck in GPUs all read accesses to the same cache block

from different warps are merged in MSHR and a single read

request is generated to the lower-level cache.

B. Coherence and Memory Consistency

Coherence is typically defined with the ”single writer

multiple reader” invariant. At any given moment in time, there

is either a single writer or multiple readers for any given mem-

ory location [16]. The implementation of a cache coherence

protocol typically involves three aspects: 1) propagating the

new value to all sharers either by invalidating or updating

private copies; 2) acknowledging the global performance of

store operations; 3) maintaining write atomicity [9] when

required (i.e. value from the store operation is atomically seen

by all threads at once). Some coherence protocols disregard

some of these aspects partially or entirely.

While coherence deals with how values are propagated for a

single memory location, it is generally not sufficient to reason

about parallel thread interactions where multiple memory

locations may be accessed. Memory consistency model defines

the valid ordering of memory operations to different locations.

In this paper, we consider the implementation of Sequential

Consistency (SC) and Release Consistency (RC) on GPUs built

on top of our timestamp-based coherence protocol.

Sequential consistency (SC) [17] requires that the memory

operations of a program appear to be executed in some global

sequence, as if the threads are multiplexed on a uniprocessor.

SC restricts many architecture and compiler optimizations and

usually leads to lower performance [18]. Release Consistency

(RC), which is a relaxed memory consistency model that

allows re-ordering of memory operations to different ad-

dresses. RC also relaxes the write atomicity requirements. The

programmers can affirm the order between memory operations

using fence. In summary, SC and RC are considered as two

extreme examples as SC is the most restrictive memory model

and RC is a more relaxed memory model. There are models

in between such as Total-Store-Order (TSO) [18].

C. Invalidation-based Protocols

Conventional invalidation-based coherence protocols de-

signed for multiprocessors (e.g. directory-based or snoopy

protocol) are ill-suited for GPUs. They incur extensive coher-

ence traffic and large storage overhead. The traffic overhead

incurred by the invalidation-based protocols is due to unnec-

essary refills for write-once data which is a common access

pattern in GPUs. Additionally, invalidation-based protocols

incur the recall traffic, when all L1 copies need to be invali-

dated upon L2 invalidation or directory eviction. The storage

overhead of the invalidation-based protocols is mostly due to

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

18

→

→ ⇒

the need to track outgoing in-flight coherence transactions and

incoming coherence requests. If we reserve sufficient storage

to handle the worse case scenario, an on-chip buffer as large

as 28% of the total GPU L2 cache is needed [19].

D. Time-based Coherence

Temporal coherence (TC) [9] is a time-based cache coher-

ence protocol designed for GPUs. TC uses time-based self-

invalidation to reduce the coherence traffic. Like other time-

based coherence protocols [10], TC assumes that single chip

systems can implement globally synchronized counters. In

TC, each cache block in private caches is assigned a lease,

which indicates the time period that the block can be accessed

in the private cache. The synchronized counters are used

to count the lease period. A read access to a cache block

in L1 cache checks both the tag and expiration time of its

lease. A valid tag match but expired lease is considered as a

coherence miss, because the block is already self-invalidated.

L2 cache keeps track of the expiration time of each cache

block. When L2 cache receives a read request, it updates the

expiration time of the block’s lease, so that the new request

could access it. A write request is sent directly to the L2

cache where it can be performed only when the leases of

all private copies of the block expire. TC also implements

a version that relaxes the write atomicity (TC-Weak) which

eliminates write stall and postpones any possible stall to

explicit memory synchronization operation (memory fence).

Write acknowledgment in TC-Weak returns the time at which

the write will become visible to all other SMs. These times are

tracked by Global Write Completion Time (GWCT) counters

for each warp. A memory fence operation uses GWCT to

stall warps until all previous writes by that warps are globally

visible.

While TC solves some of the challenges in providing

coherence to GPUs it suffers from several implementation

related challenges.

1) Globally Synchronized Clock: TC uses globally syn-

chronized counters to drive coherence decisions (e.g. self-

invalidation) and avoid coherence traffic. Each private cache

and shared cache partition maintain its own synchronized

counter and all counters are clocked by an independent clock.

Relying on synchronized counters in all private and shared

caches to make coherence decisions raises scalability concerns.

With the growth in GPU chip size and increase of the clock

speed, the signal used to clock the synchronized counters can

suffer from clock skew and may also lead to extra power

consumption for the synchronized clock tree. The clock skew

can be aggravated by the increase of clock speed and die

area [11], which will in turn affect the correctness of the

protocol.

2) Cache Inclusion: Current GPUs do not enforce cache

inclusion. TC relies on L2 cache to maintain the lease term

of each private L1 cache copy. This approach forces L2 to

be inclusive cache. In the absence of cache inclusion one

approach to maintain the lease information is to maintain

the lease terms in memory. But adding lease information to

memory at the granularity of a cache block size is prohibitively

expensive, in terms of area. One option to reduce the area cost

is to maintain lease expiry information at a coarse-granularity,

say at a page level, rather than at the cache block granularity

in memory. However, a coarse grained lease counter must be

updated to the latest lease expiry time of any cache block

within that larger block. Hence, the lease validity times may

be unnecessarily increased for all cache blocks in that coarse

granular block. The consequence is that when the original

block is fetched back the counter (which is modified by some

later evictions) can stall the write to the same cache block for

a longer period unnecessarily.

To avoid these drawbacks TC assumes inclusive cache,

which reduces the effective cache size and could eventually

affect cache performance. It is also incompatible with the

common assumptions about GPU cache [20], [21], because

inclusion is normally not enforced.

3) Lease-Induced Stall and Contention: In TC, when the

lease of a cache block is not expired, the writes to the block in

L2 need to be delayed until the lease is expired. When a write

is delayed, all subsequent reads are delayed until the write is

performed. The waiting reads then increase the occupancy of

the input queue of the shared cache.

Delayed eviction in L2 caches (due to the inclusion require-

ment discussed above) can cause similar problem. A cache

block with an unexpired lease forces the replacement policy

to chose a different victim cache line. If all cache lines in a

set have unexpired leases then the replacement process also

stalls. Stalls in L2 cache can affect the capability of the GPUs

to exploit memory level parallelism which is critical to hide

memory latency.

III. G-TSC: GPU CACHE COHERENCE USING TIMESTAMP

ORDERING

A. Timestamp Ordering

The fundamental reason that TC suffers from the various

drawbacks is that the writes need to wait for the unexpired

leases. We argue that it is possible to achieve all the benefits

of TC without introducing stalls and weakening the semantics.

The key to achieving these desirable properties is timestamp

ordering. Timestamp ordering is combination of timestamps

and physical time used to define the order of memory op-

erations. It is formulated as Op1 Op2 (Op1 <ts

Op2) or (Op1 =ts Op2 and Op1 <time Op2) where Op1 and

Op2 are memory operations (load or store), indicates the

order of memory operations, <time means that the operation

on the left happened before the operation on the right in

physical time, and <ts means that the operation on the left

has a timestamp smaller that the operation on the right.

When the timestamps of two memory operations are the
same, the physical time is used to order them. It is different
from the time-based ordering used by TC, which always uses

physical time to order global memory operations: Op1 → mem

Op2 ⇒ Op1 → time Op2 where → mem indicates global

memory ordering while → time indicates the order of

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

19

executing

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

20

the operations in time. In timestamp ordering, the global time

is only used to order memory operations from the same thread.

The key property of timestamp ordering is the capability

to logically schedule an operation in future by assigning a

larger timestamp. This largely eliminates the lease-induced

stalls in TC, as a write could be performed long before the

read lease expires but logically it can still happen after the

read. Tardis [12] is a previously proposed coherence protocol

for CPUs that uses timestamp ordering. In this work, we build

on Tardis and design timestamp coherence for GPUs, called

G-TSC.

B. Timestamps in GPUs

In G-TSC, each cache block (C) in the private and shared

caches is associated with two timestamps: a read timestamp

(C.rts) and a write timestamp (C.wts). The timestamps are

kept as logical counters. C.wts represents the timestamp of the

store operation that produces the data in C. C.rts represents

the timestamp through which the data could be correctly read

from C, after this, the data could be changed. Conceptually,

the period between C.wts and C.rts is a read-only period in

which the data in C is guaranteed to be valid for the local

threads in the SM. We call this period as the lease. Each

private cache keeps a warp timestamp table (warp ts), where

warp i’s timestamp is recorded as warp tsi. The timestamp

of each warp represents the conceptual timestamp of the last

memory operation performed by that warp. The shared cache

keeps a memory timestamp (mem ts). mem ts keeps track of

the maximum rts of all cache blocks evicted from the shared

cache.

Memory operations can be conceptually ordered using

timestamps. It is denoted as OPts which can be LDts (for

load) or STts (for store). All mem ts and warp ts are

initially set to 1. wts and rts are set to (mem ts) and

(mem ts + lease) when the data is fetched from DRAM.

C. Principles of G-TSC

G-TSC constructs a concurrent system with timestamp

ordering such that the load value and write order are consistent

with the timestamp order. For example, consider a load[A]
and a store[A] (produces value 1), assuming that the initial

value at A is 0. If load ts = 10 and store ts = 8, then

the load must return 1, because it logically happens after the

store according to the timestamp, even if according to physical

time, the load is issued from a warp earlier. If load ts = 8
and store ts = 10, then the load must return 0. In essence,

G-TSC attempts to assign the timestamp to each memory

operation, so that the returned values are consistent with the

assignments.

Without conflicting memory operations from different

warps, each warp monotonically increases its own warp ts
and assigns it to each memory operation issued. However,

this ”default” assignment may not fit into the current state

of the system. In order to satisfy coherence, the protocol

continuously adjusts the assignment to memory operations

(LDts and STts) and warp ts as we describe is details in

the next section.

IV. G-TSC IMPLEMENTATION

In this section, we discuss the implementation of G-TSC.

Our protocol is specified by: 1) The operations in private L1

after receiving the requests from the SM; 2) The operations

in shared L2 cache. 3) The operations in private L1 after

receiving the response from shared L2;

A. Private Cache Operation

Figure 1a shows the finite state machine of the L1 cache and

its transitions. We will explain these states and transitions in

the following sections. Note that PrRd and PrWr are generated

by the SM (similar to processor read and processor write in

traditional CPU coherence transition diagrams), BusRd and

BusWr are generated by the L1 cache, and BusFill, BusWrAck,

and BusRnw are generated by the L2 cache (and delivered

through the interconnection network).

1) Load: Figure 2 shows the flowchart of a load request

processing in L1 cache. When a load address has a tag match

in cache then the cache line where the tag match occurred is

represented by C and C.wts and C.rts represent respectively,

the write timestamp of the data in that cache line, and the

read timestamp assigned when that cache line was fetched

previously. The load access is then represented by a tuple

<C, C.DATA, C.wts, C.rts>.

An access to a cache block in L1 cache results in a hit if

it fulfills two conditions: 1) pass the tag check, and 2) the

warp tsi is less than or equal to C.rts, where warp tsi is

the timestamp of the warp that generated the load operation.

An access that fulfills both conditions results in a hit and

it may update the warp tsi to Max(warp tsi, C.wts). If
the access fails to fulfill any of these conditions, a read

request <BusRd, BusRd.wts, BusRd.warp ts> is sent to

L2 cache. The value of BusRd.wts is set to 0 if the requests

failed in the tag check, otherwise it is set to C.wts if

there is a tag match but its lease has expired. The value of

BusRd.warp ts is set to warp tsi.

2) Store: Figure 3 shows the flowchart of a store request

processing in L1 cache. Since L1 cache is a write-though

cache, all store requests (PrWr) are processed in the L2 cache.

First, if the address hits in the L1 cache the L1 cache block

data is updated, but all further accesses to the data from the

SM are blocked (further elaboration in section V-A). After that,

a write request <BusWr, BusWr.warp ts, BusWr.Data>
is sent to the L2 cache where BusWr.warp ts is set to

warp tsi and BusWr.Data holds the store data.

B. Shared Cache Operation

Figure 1b shows the finite state machine of the L2 cache

and its transitions. We will explain these states and transitions

in the following sections. Note that BusRd and BusWr are gen-

erated by L1 cache and received through the interconnection

network, DRAMFill is generated by the DRAM, DRAMRd is

generated by the L2 cache and sent to the DRAM, and BusFill,

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

21

(a) The FSM Actions in L1 Cache. (b) The FSM Actions in the shared L2 Cache.

Fig. 1: The Finite State Machine of both L1 and L2 Caches. The prefix Pr denotes the messages received from the SM, DRAM

denotes the messages received from the DRAM and Bus denotes the messages exchanged with the NoC.

Fig. 2: The Flowchart of the Load Request From SM

Fig. 3: The Flowchart of the Store Request From SM

BusRnw, and BusWrAck are generated by the L2 cache and

sent to L1 cache through the interconnection network.

1) Loads from L1: The flowchart of processing a read

request in shared cache is shown in figure 4. If the read

address hits in L2 cache block, then the wts in the request

Fig. 4: The Flowchart of the Read Request from L1 Cache

Fig. 5: The Flowchart of the Write Request from L1 Cache

(BusRd.wts) is checked against the wts in the cache block

and if they match then a renewal response is sent back the

requester with an updated rts. This is the case when data has

not been updated in L2 after the last write that is seen by the

private L1. But the lease in L1 has expired and it simply needs

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

22

Fig. 6: The Flowchart of DRAM Fill and Eviction

to be renewed.

If the BusRd.wts does not match wts in the cache block,

it implies that the data is in fact updated by another SM after

the requesting SM’s lease has expired. Hence, a fill response

is sent to the requester including the new data, the wts of the

new data, and updated rts as shown in the flow chart.

(a) The Flowchart of Re-
newal Response from L2.

(b) The Flowchart of Write Acknowledg-
ment from L2.

2) Stores from L1: The processing of a write request

(BusWr) is described in figure 5. The wts of the new data is

calculated based on the stored value of rts and the received

value of warp ts as shown in the flow chart. After calculating

the value of wts, the value of the new value of the rts is also

calculated and both timestamps are sent back to the requester

with the acknowledgment response.

Finally when the L2 receives a request (either BusRd or

BusWr) for a cache block that is not present in the cache,

both load and store will trigger a read request (DRAMRd)

sent to the GDDR DRAM.

C. DRAM Operation

Figure 6 shows how the shared cache handles the DRAM

fills and block evictions. When a block is filled from DRAM,

C.wts and C.rts are set based on mem ts and mem ts +
lease respectively. On the other hand, when a cache block

is evicted from L2, mem ts needs to record the evicted

block’s expiration time, so that when later the block is

fetched back, L2 could assign timestamps to future stores

correctly. Upon eviction, the value of mem ts is set to

Max(mem tso, Ce.rts) where mem tso is the original value

of mem ts and Ce.rts is the rts of the evicted cache block.

As we mentioned, even though all evicted blocks share the

same mem ts, it is not an issue for G-TSC, because the

timestamp ordering could always logically order stores to a

point in future without stall.

D. Private Cache Operation After Response from Shared

Cache

Figures 7 and 8 show how the private cache handles

the responses from shared cache. The private cache receives

a renewal response <BusRnw, BusRnw.rts> when it al-

ready has the updated version of the data. In this case, it

extends the current lease of the block to the rts value in

the response. However, a write acknowledgment <BusWrAck,

BusWrAck.rts, BusWrAck.wts> means that a store operation is

completed and a new values of wts and rts has been assigned.

Fig. 7: Flowcharts of Private Cache Operation.

Fig. 8: The Flowchart of Fill Response from LLC

Hence, the private cache needs to update its local information

and unlock the block so other warps can access it. A fill

response <BusFill, BusFill.wts, BusFill.rts, BusFill.Data> can

either fill a new block or update an existing block with new

data. The private cache should probe the tag array to get the

older version of the block, or allocate a new cache block for

the incoming block by using the replacement algorithm. The

data, rts and wts are copied from the response to the cache

block allocated (Figure 8).

We will explain the operations of G-TSC with an example.

Assume two warps are being executed in two different SMs

where the first one reads some memory location [X], writes

to another memory location [Y] and then reads the [X] again.

The other warp reads [Y], writes to [X], and then reads [Y]
again. The sequence of instructions for both warps are shown

in figure 9a. For the sake of this example, we will assume that

there is only one warp executed in each SM. The execution

sequence for all instructions is shown in figure 9b. The read

operation (A1) that tries to read location [X] misses in L1

cache and hence the read request is sent to the lower-level

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

23

Ⓧ

Ⓧ

Ⓧ

Ⓧ

Ⓧ

Ⓧ

Ⓧ

Ⓧ Ⓧ Ⓧ

Ⓧ

Ⓧ

Ⓧ

Ⓧ Ⓧ Ⓧ
Ⓧ

TABLE I: Contents of Requests and Response Exchanged

Between Private and Shared Caches.

(a)

against the actual write timestamp of the address in the cache

(wts = 7). Since they do not match, it is clear that a new

write has occurred after the last value X was seen by SM0.

Then the L2 cache sets the new lease of X to be 15 which

is greater than the timestamp of the reading warp 14, thereby

giving the reading warp an opportunity to read the data. The

new data and extended lease period are sent to L1 cache 15

of the requester. When instruction (B3) tries to read Y in

SM1, it hits in the cache Ⓧ16. Note that the timestamp of

(b)

Fig. 9: G-TSC Operation Example. The contents of the caches

of each SM is shown with the wts and rts of each block in

the parenthesis.

cache (1). The request contains the address (addr = X),

the warp timestamp (warp ts = 1) and the write timestamp

(wts = 0) which is set to zero since the block is not present

in L1 cache. The block is fetched from the main memory

and placed in L2 cache 2 and then is sent to L1 cache

with a lease period ([1,6]) as shown in 3 . Instruction (B1)

that reads address [Y] follows the same steps as shown in

steps 4 , 5 , 6 . We assume a longer lease period for Y for

the sake of explanation. The protocol works with any lease

value. When SM0 executes the write instruction (A2), the

writing operation should be performed at the shared cache.

Hence the write is sent to L2 cache with the warp timestamp

(warp ts = 1) 7 . Based on the information in L2 cache, the

system knows that the block is valid in some private cache

until timestamp 11 (SM1 cache in this case) so it assigns

a write timestamp after that lease period (ST ts = 12) 8

and sends an acknowledgment to L1 cache with the new

lease period (wts = 12, rts = 22) 9 . The timestamp of

warp1 that issued the write operation is adjusted to 12 to

match the timestamp of the writing operation 9 . Instruction

(B2) follows the same steps that are shown in 10,11,12.

After that, SM0 tries to execute instruction (A3) and read X.

Even though X is present in the cache but the timestamp

of the reading warp (warp ts = 12) is beyond the lease

of address X ([1,6]) 13. So a renewal request is sent to L2

cache containing the write timestamp of X (wts = 1) along

with the timestamp of the reading warp ((warp ts = 12)) 13.

L2 cache checks the write timestamp in the renewal request

Message Type rts wts warp ts data

Read/Renewal Requests (BusRd) √ √
√ √

Write Request (BusWr) √ √ √

Fill Response (BusFill) √

Renewal Response (BusRnw) √ √

Write Acknowledgment (BusWrAck)

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

24

→ → → →
 →

the reading warp (warp ts = 7) fall within the lease period

([1,11]) hence the read is performed.Based on the timestamp

ordering, the order of the executed instructions in this

example is (A1 B1 B2 B3 A2 A3).

To summarize, Table I shows the contents of different

messages exchanged in G-TSC.

V. GPU-RELATED CONSIDERATIONS

The above state transition description shows how logical

time based coherence can be applied within the context of

GPUs. In this section we discuss GPU-specific

considerations that need to be addressed for achieving good

performance.

A. Update Visibility

The L1 cache in GPUs is shared between thousands of

threads, and to ensure correctness, an updated data block

should not be accessible by other threads until the store

is completed and acknowledged. With timestamp

ordering, a store operation is not completed until its

timestamp is determined.

Figure 10 illustrates this issue with an example. In this

example, we will show how poor management of the updated

data can affect the correctness of the coherence protocol and

cause a coherence violations. Initially, the cache block A
has a lease period [1, 5] ([A.wts, A.rts]). In step (2), warp 1

attempts to write A. According to the validity information

available in the private cache, the timestamp of the store

operation (STts) is set to 6 and the warp timestamp (warp
ts) and write timestamp (wts) are updated accordingly. The

write is sent to L2 and L1 waits for the acknowledgement.

Before the acknowledgement which will contain the lease

that L2 assigns to the new data, both A.wts and A.rts are

set to 6. At this point, L1 only knows that the start of the

lease will be at least 6. In step (3), warp 2 with warp ts = 1
reads A and its own warp ts is updated to 6 meaning that

the timestamp of load operation is set to 6. In step (4), the

acknowledgement from L2 for the store operation from

warp 1 arrives, and the assigned lease is [11,20]. The start

of the lease is greater than 6, and the lease of A in L1 is

updated to [11,20]. At this point,

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

25

∼

we can see that the timestamp of the read from warp 2 in step

(3) is 6, which is less than the lease of warp 1’s write in global

order ([11,20]). It means that the write is performed at logical

time with timestamp 11, but warp 2 already observed it at

an earlier logical time with timestamp 6. Essentially, a read

observes a value that will be produced a later logical time. It

is a violation of coherence.

Intuitively, there are two ways to resolve this problem: 1)

delay all accesses to the updated data until the store operation

is globally performed and acknowledged; or 2) keep the old

copy along with the new one and allow accessing the old copy

until the store is globally performed. For 1), an MSHR entry

is allocated for read requests as if they are read misses, and

they are granted access to the data as soon as the store is

acknowledged. At this point, the timestamp is determined and

the warp ts of the reading warp is updated accordingly. For

2), a hardware structure is needed to hold the old data while

the store is pending. Moreover, we also need to ensure that

the writing warp can only read the new data that it generates

after the write is being globally performed.

Note that it is not an issue for Simultaneous Multithreading

(SMT) [22] processors with conventional coherence protocol

and write atomicity. Because before the write is globally

performed, the new value is in the processor’s write buffer and

the old value is in the L1 cache. The other threads in the same

processor can bypass write buffer and directly obtain the old

data from L1 cache, this ensures write atomicity. If write atom-

icity is not supported, the threads in the same processor could

read the new values from write buffer. However, conventional

protocol never allows the read to observe new value before it

is produced (as opposite to the example in Figure 10). Using

a write buffer in GPUs increases the hardware complexity of

the LDST unit and has a high area overhead. A single store

instruction generates 2-4 memory write operations on average.

With 48-64 concurrent warps executing the same code, those

warps are expected to hit the same store instruction within a

small time window meaning that the write buffer need to deal

with 200 outstanding write requests per store instruction.

In this paper, we evaluated both approaches. Different from

TC, we found that option 1 gives the better trade-off in GPUs.

The performance overhead of delaying accesses to updated

block is negligible, so we do not need to pay for the hardware

cost for keeping multiple copies.

B. Request Combining in GPUs

The second challenge is the validity of the data serviced by

L2 cache requested by multiple threads.

When multiple read requests from different warps with

different warp ts in the same SM try to access a cache

block that is not present in L1 cache, these requests can be

either all forwarded to L2 cache or just the first request is

forwarded, with the hope that the other warp ts will fall in

the lease and be able to access the data. The two options

indicate a trade-off between coherence traffic and performance.

Forwarding all requests to L2 cache increases the traffic but

assures that the requests are serviced as soon as the responses

Fig. 10: Example of Update Visibility Challenge in GPUs

are returned from L2 cache. Forwarding only the first request

and keeping the remaining requests in the MSHR preserves the

bandwidth but may increase the latency of some requests if the

allocated lease window cannot cover their warp ts and incur

additional renewals. This issue is significant in GPUs since

the NoC bandwidth is one of the performance bottlenecks as

shown in [13]. The choice between forwarding all requests

and keeping them in MSHR has a significant impact on the

performance since the latency of the NoC increases with the

increase of the memory traffic generated by the SMs [23].

Forwarding all requests to L2 cache can increase the number

of memory requests sent by SMs by 12% to 35% on average.

Consider the example in Figure 11. In step (2), a read

request is sent to L2 with the warp ts of warp 1. In step

(3), warp 2 and 3 try to read the same block. Assuming we

only send one request, they do not generate extra messages

from L1 to L2. Later in step (4), the response gives L1 the

lease window [1,5], warp 1’s request is removed from MSHR.

Unfortunately, it is not sufficient for the other two requests

so we need to send a renewal request for them and they still

remain in L1’s MSHR, see step (5).

In our approach we chose to keep the requests in MSHR

and then send a renewal request in case the lease term expires

before the waiting request can read the data. Where extra

renewal requests are sent we still end up with saving some

bandwidth because a renewal request generally has a smaller

data response packet since the response from L2 contains the

renewed lease information when no stor has been performed

in the interim.

C. Non-Inclusive Caches in GPUs

As discussed in Section II-D2, TC has to force inclusion and

incur delayed eviction. In timestamp ordering, it is possible

to maintain only one timestamp in memory for the evicted

blocks without introducing unnecessary stall, since timestamp

ordering makes it possible to logically schedule an operation

to happen in future by assigning a larger timestamp. Therefore,

even if the timestamp in memory is increased by other

evictions, a conflicting store can execute without stall by

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

26

Fig. 11: Example of Multiple Requests Challenge in GPUs

assigning a larger timestamp greater than the single coarse-

grain timestamp stored in memory. Using timestamp ordering,

we can support non-inclusive policy, which is compatible with

current GPUs, and avoid the delayed eviction.

D. Timestamp Overflows

The experiments based on our benchmarks show that 16-

bit timestamp is enough for all executions to make timestamp

counter wrap-around sufficiently rare. Note that the L1 cache

is flushed after each kernel and all timestamps are reset. In case

of timestamp wrap around, the timestamp overflow mechanism

can be handled at the L2 cache. The overflow can occur

due to lease extension or assigning a timestamp to a new

store operation (these are the only operations that increase the

timestamp). The timestamps at the L1 caches are reflection

of the timestamps assigned by the L2 cache (L1 cache does

not increment the timestamps by itself). When a timestamp

update causes an overflow, the L2 cache bank sends a reset

signal to all L2 cache banks and then reset its timestamps.

Upon resetting the timestamps in L2 cache bank, the write

timestamp of all blocks is set to 1 and the read timestamp is

set to (lease) and the memory timestamp is set to 1. Since the

L2 cache has the up-to-date data of all blocks, there is no need

to flush the cache. After resetting all timestamps, the L2 cache

responds to every request with timestamp with a large value

with a fill response along with the data even if the request is

for a renewal. It also includes a timestamp reset signal with the

response to inform the L1 cache that the timestamp is reset.

When L1 cache receive a response with a reset message, it

flushes its blocks and reset warp timestamp and then access

the new data.

For comparison, TC uses a 32-bit local timestamp for each

L1 cacheline, a 32-bit global timestamp for each L2 cacheline,

a 32-bit entry per warp in the GWCT table and a 32-bit counter

for each L1 and L2 cache.

VI. EVALUATION AND DISCUSSION

A. Evaluation Setup

We implemented G-TSC in GPGPU-Sim version 3.2.2 [13].

We used GPUWattch [24] to estimate the power and energy

consumption. The simulated GPU has 16 SMs, with 48KB

shared memory, and 16KB L1 cache each. Each SM can

run 48 warps at most with 32 threads/warp. L2 cache is

partitioned into 8 partitions with 128KB each (1MB overall).

In our evaluation, we used two sets of benchmarks: the first

set requires cache coherence for correctness, and the other

does not. The second set of benchmarks are used to show the

impacts of coherence protocol on them due to the protocol

overheads.

The performance of G-TSC is compared against TC. We

implemented TC on GPGPU-Sim simulator and all the results

presented in the paper are based on our implementation of

TC on GPGPU-Sim. But to validate that our implementation

of TC closely matches the original implementation we also

ran TC on the same benchmarks with the same configuration

setting using the original simulator used in the TC paper [9].

Table II shows the execution time of TC on our G-TSC

simulation infrastructure (column four) and the execution time

of TC on the original simulator (column five). As can be seen

the two simulators provide very similar execution times. The

few differences that are present may be attributed to the fact

that the original TC used Ruby [25] to implement its cache

and memory system, while we enhanced the default memory

system implemented in GPGPU-sim for implementing the G-

TSC memory system.

TABLE II: Absolute Execution Cycles of TC and Baseline

(BL) in Millions

Benchmark BL
(G-TSC simulator)

BL [9] TC
(G-TSC simulator)

TC [9]

BH 0.55 1.26 0.84 1.03

CC 1.47 2.99 1.77 1.75

DLP 1.63 5.53 1.63 1.44

VPR 0.85 1.98 0.90 0.77

STN 2.00 4.66 1.74 1.62

BFS 0.79 1.95 2.32 1.87

CCP 13.50 13.59 13.50 13.47

GE 2.22 4.89 2.49 3.51

HS 0.22 0.22 0.23 0.23

KM 28.74 30.89 30.78 34.17

BP 0.84 1.61 0.69 0.58

SGM 6.08 5.74 6.14 5.91

We also simulated the baseline (BL) configuration, which

essentially turns off the private cache to provide coherence,

both on the original TC simulator and our G-TSC simulator.

Table II shows the execution time of BL on our G-TSC sim-

ulation infrastructure (column two) and the execution time of

BL on the original TC simulator (column three). The baseline

execution times differ in the two models. We believe that the

difference stems from how the two simulators implement no

L1 cache design in the simulator. G-TSC implements BL by

essentially sending all requests directly to the L2 cache over

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

27

×

the NOC and assumes that there are no L1 cache tags to

be checked or L1 cache MSHRs to be updated. Hence, any

relative performance improvements over the baseline model

reported in the original TC paper and our paper may be

different. From here on we report all results relative to our

baseline implementation on our simulation infrastructure. We

implemented G-TSC and TC with SC and RC memory

models.

B. Performance Evaluation

Figure 12 shows the performance (execution cycles) of G-

TSC and TC with RC and SC normalized to the performance

of coherent GPU with L1 cache disabled (therefore enforcing

coherence through the shared L2 cache). There are two sets

of benchmarks. The first set shown in the left cluster are

benchmarks that require coherence and will not function

correctly without it. The benchmarks in the right cluster do

not require coherence. Hence, we show one new performance

bar (the left most bar titled Baseline W/L1) using a baseline

with L1 cache since they do not need coherence and can take

advantage of L1 cache in the baseline.

The higher bars in Figure 12 indicate better performance.

Our results show that the performance difference between RC

and SC with G-TSC is smaller than the difference between

RC and SC for TC. G-TSC does not incur much stall time due

to unexpired leases, as opposed to TC. Hence, the difference

between SC and RC with G-TSC is small, sometimes even

negligible (e.g. BH, BFS and most of the applications that do

not require coherence as shown in the right cluster). For G-

TSC, benchmarks that requires coherence obtain 12% speedup

with RC compared to SC. The overall average speedup is

around 9% over all benchmarks.

Interestingly, for one benchmark (CC), SC is better than RC

in G-TSC˙G-TSC-SC outperforms G-TSC-RC sometimes

(e.g. CC) because the NoC traffic is limited by the fact that in

SC only one outstanding memory request per warp is allowed.

While RC could eliminate certain warp stalls, but it generates

more coherence messages and allows more requests into NoC,

which happens to have more negative impact on performance

in CC. As a result, the average network latency goes down

and the memory requests can be serviced faster in SC. In

CC, we indeed confirm that the average network latency per

request in G-TSC-SC is 29% lower than G-TSC-RC due to

a 14% reduction in memory request rate generation. Previous

work [13] showed the similar behavior.

G-TSC is able to achieve about 38% speedup over TC with

RC; and about 84% speedup over TC with SC. G-TSC with

SC outperforms TC with RC by 26% for benchmarks that re-

quire coherence for correctness. These significant performance

improvements are mainly due to G-TSC’s ability to avoid

warp stalling caused by delayed writes and eviction. G-TSC

also avoids the stalls caused by GWCT in TC before executing

fence instructions. These stalls aggravate the performance

penalty in SC since each warp is allowed to have at most

one outstanding memory request.

Fig. 12: Performance of GPU Coherence Protocols with Dif-

ferent Memory Models

Fig. 13: Pipeline Stalls due to Memory Delay in G-TSC and

TC Normalized to Stalls in No-L1-Cache Configuration

Benchmarks like CCP, HS, and KM (that do not require

coherence) do not exhibit significant difference in performance

between G-TSC and TC and between SC and RC. These

benchmarks are compute-intensive benchmarks so the stalls

imposed by the coherence protocols or consistency model

requirement are overlapped with execution of other non-

memory instructions.

Figure 13 plots the pipeline stalls due to memory delays

normalized to baseline with no L1 cache configuration. The

results shows that TC encounters around 45% more stalls than

G-TSC for the first set of benchmarks and more than 1.4
stalls for the second set of benchmarks.

The performance of GPU with L1 cache is also presented

in figure 12 to show the performance overhead of G-TSCfor

benchmarks that do not need coherence. We report the per-

formance of the second group of benchmarks only since the

presence of L1 cache with no coherence (which is the case

here) affects the correctness of the first group of benchmarks.

The figure shows that G-TSC overhead is around 11% with

respect to the non-coherent GPU. It also shows that G-TSC

can perform as good as the non-coherent GPU in most of the

cases (e.g. CCP, GE, HS and SGM).

Figure 14 shows the performance of G-TSC with different

lease periods with RC. G-TSC shows small sensitivity for

lease values variation. This insensitivity is because lease period

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

28

in G-TSC is not related to the physical time; it represents

the logical time. Intuitively only very small and very large

lease values may impact G-TSC. Small lease values can affect

performance because of the excessive renewal requests. It also

may aggravate the multiple reader issue discussed in V-B.

Large leases cause the timestamp to roll faster and reduce the

chance that multiple warps could access the cache block during

its lease before renewal. But for a range of lease periods that

we explored (8-20 cycles) G-TSC performance is unchanged.

Fig. 14: Performance of G-TSC-RC with Different Lease

Values

C. Coherence Traffic

Coherence traffic in G-TSC and TC is mainly due to the

lease renewal requests in L1 cache or fetching new data to

replace old data. Since G-TSC is conducting its coherence

transactions in logical time, it is able to reduce the coherence

traffic compared to TC which operates coherence transactions

in physical time. Since logical time in G-TSC rolls slower

than the physical time, more load operation are able to access

the cache block during its lease period in L1 cache. This

reduces the number of renewal requests.

Another optimization for NoC bandwidth usage is that

renewal response in G-TSC does not require sending the data

again. Figure 15 shows the traffic in NoC for G-TSC and TC

with RC and SC memory models normalized to the NoC traffic

in a coherent GPU with no L1 cache. We see that G-TSC is

able to reduce the traffic by 20% over TC with RC and 15.7%

with SC for the first set of benchmarks. Note that the NoC

traffic is almost the same for RC and SC in both G-TSC and

TC for the second set of benchmarks; these benchmarks do

not generate coherence traffic to begin with.

D. Energy

G-TSC is able to reduce the total energy of the GPU since it

is able to enhance the performance and reduce the NoC traffic.

Figure 16 shows the normalized overall energy consumption

of evaluated benchmarks. G-TSC consumed 11% less energy

than TC with RC for the first set of benchmarks. RC consumes

more energy than SC for some benchmarks, like CC and BH,

even though their performance is better. The reason for this

Fig. 15: NoC Traffic of GPU Coherence Protocols with

Different Memory Models

Fig. 16: Total Energy Consumption of GPU Coherence Pro-

tocols with Different Memory Models

behavior is that in SC implementations, the cores remain idle

and do not consume much energy (except static energy).

We studied the energy saving of individual components of

the GPU, mainly, energy consumed by L2 cache, main mem-

ory (DRAM and memory controller) and the interconnection

network. G-TSC reduces the energy consumed by the L2

cache by 2%, the NoC by 4%, and the other GPU components

by 5%. It also saves 1% more energy for the L2 cache, 3% for

the NoC, and 5% for the other GPU components over TC. The

Fig. 17: L1 Cache Energy (in joules) of GPU Coherence

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

29

Protocols with Different Memory Models

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

30

total energy saving is 11% over the baseline, and 9% over the

TC for the first set of benchmarks. The results in figure 16

includes the energy of L1 cache. We also presented the L1

cache energy consumption in figure 17. The figure shows that

TC consumed slightly less energy than G-TSC.

We see that in GPUs, SC may not always be a bad

choice, because it may offer better performance for certain

benchmarks (as discussed before) and incur less energy due to

the reduced NoC traffic. With TC, the majority of applications

show a big gap between RC and SC. However, G-TSC reduces

this gap and makes it much smaller. This motivates supporting

SC feasible in GPUs, and some recent works came to the same

conclusion [26].

E. Characteristics of G-TSC

Implementing cache coherence in logical time in G-TSC

rather than physical time as in TC introduces some advantages.

Kernels that have more load instructions than store instructions

do not incur cache misses due to lease expiration since their

timestamps roll slower. Our experiments show that the number

of misses due to lease expiration has dropped by around 48%.

This observation allows more accesses to hit in L1 cache which

indeed translates into relatively longer lease in physical time.

However, multiple results show that G-TSC is insensitive to

small variations in lease values. It allows the implementation

with relatively small lease values which limits the speed of

timestamp rollover.

VII. RELATED WORK

The use of timestamps in coherence protocols has been

studied in multiple hardware and software protocols. Lam-

port [27] is one of the earliest efforts that tried to use logical

times to order operations in distributed systems and avoid

using synchronized physical clocks. They studied the use of

logical timestamps to order operations in distributed systems.

De Supinski et. al. in [28] evaluated the performance of

the late delta cache coherence protocol, a highly concurrent

directory-based coherence protocols which exploits the notion

of logical time to provide support for sequential consistency

and atomicity for CPUs. Min et al. [29] proposed a software-

assisted cache coherence scheme which uses a combination

of a compile-time marking of references and a hardware-

based local incoherence detection scheme. Nandy et al. [30]

is one of the first hardware coherence protocol that uses

timestamps. TSO-CC [31] proposed a hardware coherence

protocol based on timestamps. It supports total-store-ordering

(TSO) memory consistency model and requires broadcast-

ing and frequently self-invalidating cache lines in private

caches. TC-Release++ [32] is a timestamp-based coherence

protocol for RC that is inspired by TC and addresses the

scalability issues of efficiently supporting cache coherence in

large-scale systems. TC-Release++ eliminates the expensive

memory stalls and provides an optimized lifetime prediction

mechanism for CMP.

The previous protocols tightly couple timestamp with phys-

ical time. Tardis [12] is a timestamp coherence protocol that

is based on logical time rather than physical time. Tardis

is designed for CMP and implements SC. G-TSC builds

on top of Tardis and focuses on GPU implementation. G-

TSC optimizes the protocol requirements to fit the highly

multi-threaded GPU cores. An imporved version of Tardis

(called Tardis 2.0) [33] implements TSO consistency model

and proposes optimized lease policies. Similar to Tardis,

Martin et. al [34] proposed timestamp snooping scheme where

processor and memory nodes perform coherence transactions

in logical order. The network assigns a logical timestamp for

each transaction and then broadcasts it to all processor and

memory nodes without regard for order.

Self-invalidation in private caches has been explored in

the context of cache coherence. Dynamic self-invalidation

(DSI) [35] reduces cache coherence overhead and reduce

invalidation messages by speculatively identifying which block

to invalidate when they are brought into the cache but deferring

the actual invalidation to future time. DSI still requires explicit

messages to the directory to acknowledge self-invalidation.

DSI can reduce the traffic by using tear-off blocks that are

self-invalidated at synchronization instructions. A similar idea

is proposed in [36] that extends the tear-off blocks to all cache

blocks in order to entirely eliminate coherence directories.

Last-Touch Predictors (LTP) [37] triggers speculative self-

invalidation of memory blocks in distributed shared memory.

VIII. CONCLUSION

This paper proposes, G-TSC, a timestamp-based GPU

cache coherence scheme that reduces the coherence traffic.

Different than the previous work on time based coherence

for GPUs, G-TSC conducts its coherence transactions in

logical time. We implemented G-TSC in GPGPU-Sim and

used 12 benchmarks in the evaluation. When using G-TSC

to keep coherence between private L1 caches and the shared

L2 cache, G-TSC outperforms TC by 38% with release

consistency. Moreover, even G-TSC with sequential consis-

tency outperforms TC with release consistency by 26% for

benchmarks that require coherence for correctness. For the

same benchmarks, the memory traffic is reduced by 20%.

ACKNOWLEDGMENT

This work is supported by the following grants: NSF-CCF-

1719074, DARPAPERFECT-HR0011-12-2-0020, NSF-CCF-

1657333, NSF-CCF-1717754 and NSF-CAREER-0954211

REFERENCES

[1] X. Xie, W. Tan, L. L. Fong, and Y. Liang, “CuMF SGD: Parallelized
Stochastic Gradient Descent for Matrix Factorization on GPUs,” in
Proceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 2017, pp. 79–92.

[2] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen,
“Efficient GPU Spatial-Temporal Multitasking,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 3, pp. 748–760, 2015.

[3] “Khronos Group,” OpenCL, https://www.khronos.org/opencl/.
[4] “NVIDIA Corp.” CUDA C Programming Guide v4.2,, 2012.
[5] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M.

Aamodt, “Characterizing and Evaluating a Key-value Store Application
on Heterogeneous CPU-GPU Systems,” in Performance Analysis of
Systems and Software (ISPASS), 2012 IEEE International Symposium
on. IEEE, 2012, pp. 88–98.

http://www.khronos.org/opencl/

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

31

[6] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang, “Coordinated Static and
Dynamic Cache Bypassing for GPUs,” in High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on.
IEEE, 2015, pp. 76–88.

[7] X. Xie, Y. Liang, G. Sun, and D. Chen, “An Efficient Compiler
Framework for Cache Bypassing on GPUs,” in Computer-Aided Design
(ICCAD), 2013 IEEE/ACM International Conference on. IEEE, 2013,
pp. 516–523.

[8] R. Behrends, L. K. Dillon, S. D. Fleming, and R. E. K. Stirewalt,
“AMD Graphics Cores Next Architecture, Generation 3,” Advanced
Micro Devices Inc., Tech. Rep., August 2016.

[9] I. Singh, A. Shriraman, W. W. Fung, M. O’Connor, and T. M. Aamodt,
“Cache Coherence for GPU Architectures,” in High Performance Com-
puter Architecture (HPCA2013), 2013 IEEE 19th International Sympo-
sium on. IEEE, 2013, pp. 578–590.

[10] K. S. Shim, M. H. Cho, M. Lis, O. Khan, and S. Devadas, “Library
Cache Coherence,” MIT, Tech. Rep., 2011.

[11] S. Zanella, A. Nardi, A. Neviani, M. Quarantelli, S. Saxena, and
C. Guardiani, “Analysis of the Impact of Process Variations on Clock
Skew,” IEEE Transactions on Semiconductor Manufacturing, vol. 13,
no. 4, pp. 401–407, 2000.

[12] X. Yu and S. Devadas, “Tardis: Time Traveling Coherence Algorithm
for Distributed Shared Memory,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT). IEEE, 2015, pp. 227–
240.

[13] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on. IEEE, 2009, pp. 163–174.

[14] Z. Cui, Y. Liang, K. Rupnow, and D. Chen, “An Accurate GPU Per-
formance Model for Effective Control Flow Divergence Optimization,”
in Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International. IEEE, 2012, pp. 83–94.

[15] X. Xie, Y. Liang, X. Li, Y. Wu, G. Sun, T. Wang, and D. Fan, “Enabling
Coordinated Register Allocation and Thread-level Parallelism Optimiza-
tion for GPUs,” in Proceedings of the 48th International Symposium on
Microarchitecture. ACM, 2015, pp. 395–406.

[16] D. J. Sorin, M. D. Hill, and D. A. Wood, “A Primer on Memory
Consistency and Cache Coherence,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 3, pp. 1–212, 2011.

[17] L. Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE transactions on computers, vol.
100, no. 9, pp. 690–691, 1979.

[18] S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Models:
A Tutorial,” computer, vol. 29, no. 12, pp. 66–76, 1996.

[19] J. Feehrer, P. Rotker, M. Shih, P. Gingras, P. Yakutis, S. Phillips, and
J. Heath, “Coherency Hub Design for Multisocket SUN Servers with
Coolthreads Technology,” IEEE Micro, vol. 29, no. 4, pp. 36–47, 2009.

[20] N. Anssari, “Using Hybrid Shared and Distributed Caching for Mixed-
Coherency GPU Workloads,” Master’s thesis, University of Illinois at
Urbana-Champaign, 2013.

[21] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu,
“Adaptive Cache Management for Energy-Efficient GPU Computing,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer Society, 2014, pp. 343–355.

[22] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
Multithreading: Maximizing On-chip Parallelism,” in Proceedings of
the 22Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’95. New York, NY, USA: ACM, 1995, pp. 392–403.
[Online]. Available: http://doi.acm.org/10.1145/223982.224449

[23] G. Koo, H. Jeon, and M. Annavaram, “Revealing Critical Loads and
Hidden Data Locality in GPGPU Applications,” in Workload Charac-
terization (IISWC), 2015 IEEE International Symposium on. IEEE,
2015, pp. 120–129.

[24] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in ACM SIGARCH Computer Architecture News, vol. 41.
ACM, 2013, pp. 487–498.

[25] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99,
2005.

[26] B. A. Hechtman and D. J. Sorin, “Exploring Memory Consistency for
Massively-threaded Throughput-oriented Processors,” in Proceedings of
the 40th Annual International Symposium on Computer Architecture,
ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 201–212.
[Online]. Available: http://doi.acm.org/10.1145/2485922.2485940

[27] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978.

[28] B. R. de Supinski, C. Williams, and P. F. Reynolds, Jr., “Performance
Evaluation of the Late Delta Cache Coherence Protocol,” University of
Virginia, Charlottesville, VA, USA, Tech. Rep., 1996.

[29] S. L. Min, J.-L. Baer, and M. Mn, “A Timestamp-Based Cache Coher-
ence Scheme,” 1989.

[30] S. Nandy and R. Narayan, “An Incessantly Coherent Cache Scheme for
Shared Memory Multithreaded Systems,” in International Workshop on
Parallel Processing. Citeseer, 1994.

[31] M. Elver and V. Nagarajan, “TSO-CC: Consistency Directed Cache
Coherence for TSO,” in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2014, pp.
165–176.

[32] Y. Yao, G. Wang, Z. Ge, T. Mitra, W. Chen, and N. Zhang,
“Efficient Timestamp-Based Cache Coherence Protocol for Many-
Core Architectures,” in Proceedings of the 2016 International
Conference on Supercomputing, ser. ICS ’16. New York,
NY, USA: ACM, 2016, pp. 19:1–19:13. [Online]. Available:
http://doi.acm.org/10.1145/2925426.2926270

[33] X. Yu, H. Liu, E. Zou, and S. Devadas, “Tardis 2.0: Optimized Time
Traveling Coherence for Relaxed Consistency Models,” in 2016 Interna-
tional Conference on Parallel Architecture and Compilation Techniques
(PACT), Sept 2016, pp. 261–274.

[34] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A.
Wood, “Timestamp Snooping: An Approach for Extending SMPs,” in
Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS IX. New York, NY, USA: ACM, 2000, pp. 25–36. [Online].
Available: http://doi.acm.org/10.1145/378993.378998

[35] A. R. Lebeck and D. A. Wood, “Dynamic Self-invalidation:
Reducing Coherence Overhead in Shared-memory Multiprocessors,” in
Proceedings of the 22Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’95. New York, NY, USA: ACM, 1995, pp. 48–
59. [Online]. Available: http://doi.acm.org/10.1145/223982.223995

[36] A. Ros and S. Kaxiras, “Complexity-Effective Multicore Coherence,” in
Proceedings of the 21st international conference on Parallel architec-
tures and compilation techniques. ACM, 2012, pp. 241–252.

[37] A.-C. Lai and B. Falsafi, “Selective, Accurate, and Timely Self-
Invalidation Using Last-Touch Prediction,” in Computer Architecture,
2000. Proceedings of the 27th International Symposium on. IEEE,
2000, pp. 139–148.

http://doi.acm.org/10.1145/223982.224449
http://doi.acm.org/10.1145/2485922.2485940
http://doi.acm.org/10.1145/2925426.2926270
http://doi.acm.org/10.1145/378993.378998
http://doi.acm.org/10.1145/223982.223995

