
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

195 

 

           

Password protected Cache: Memoir Attacks and Resistance 

 
 

Dr. Amaresh Sahu
1
*, Mr.Gandhi Rath

2
 

 
1
*Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR 
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR 

 

                                           amareshsahoo@thenalanda.com*, gandhirath@thenalanda.com

 

 

ABSTRACT 
By coordinating evictions through cache conflicts, conflict-

based cache assaults might let an enemy guess the access pattern 

of a co-running programme. By randomising the position of the 

lines in the cache, such attacks can be prevented. By accessing the 

cache using an encrypted address and routinely switching the 

encryption key, our most recent solution, CEASER, makes cache 

randomization feasible. The most recent algorithm for constructing 

eviction sets was used to examine CEASER, and the results 

showed that CEASER can withstand years of attack with a 1% 

Remap-Rate. The two new attacks we offer in this research 

considerably advance the state-of-the-art for building eviction sets. 

Where L is the number of lines in the attack, our initial attack 

shortens the amount of time needed to build the eviction set from 

O L2 to O L. The Remap-Rate of CEASER must be raised to 35% 

in order to accommodate this attack, which is 35x faster than the 

fastest known attack. Our second assault makes use of the 

replacement policy (we evaluate LRU, RRIP, and Random) in 

order to swiftly create an eviction set, however it necessitates that 

the Remap-Rate of CEASER be increased to a value greater than 

100%, incurring unfeasible overheads. We suggest Skewed-

CEASER (CEASER-S), which divides the cache ways into 

numerous partitions and maps the cache line to be resident in a 

different set in each partition, to improve the robustness of 

CEASER against these assaults in a realistic fashion. This design 

greatly increases CEASER's resiliency since it forces the assailant 

to put together an eviction set that can move the line from a variety 

of potential spots. We demonstrate that CEASER-S can withstand 

years of attacks and yet maintain a 1% Remap-Rate. With the 

newly added structures, CEASER-S experiences a minor 

slowdown (about 1%) and a storage overhead of less than 100 

bytes. 

 
ACM Reference Format: 

Moinuddin K. Qureshi. 2019. New Attacks and Defense for Encrypted- 

Address Cache. In ISCA ’19: 46th International Symposium on Computer 

Architecture, June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, 

USA, 12 pages. https://doi.org/10.1145/3307650.3322246 

 

1 INTRODUCTION 

Conflict-based cache attacks are an important class of cache side- 

channels, where an adversary can carefully orchestrate cache evic- 

tions to learn the access pattern of a co-running application. Such 

attacks have been used to learn secrets, such as the encryption keys 
 

 

https://doi.org/10.1145/3307650.3322246


International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

196 

 

    

 

 

for AES [1]. Conflict-based attacks become feasible when the adver- 

sary and the victim share some storage structures. Modern processors 

typically share the last-level cache (LLC) between all the cores to ef- 

ficiently utilize the cache space. Unfortunately, such sharing makes 

the LLC vulnerable to attacks, as an adversary can learn the ac- 

cess pattern of the victim by causing LLC evictions, even when the 

adversary and the victim are scheduled to be on different cores. 

Architectural solutions to mitigate conflict-based cache attacks 

broadly fall in two categories. First, isolation-based mitigation [2– 

4], whereby the lines of the victim are preserved within the cache, 

making it harder for the adversary to dislodge the content of the 

victim. Unfortunately, dedicating portions of the LLC for each core 

can result in inefficient use of cache space. Second, randomization- 

based mitigation [2, 5], whereby the location of the line in the 

cache is determined randomly and this information is stored in a 

mapping table. To protect the mapping table from attacks, the OS 

is required to group the applications into protected and unprotected 

groups and only the protected applications are allowed access to the 

mapping table. Ideally, we want to avoid the storage overhead of 

large mapping tables and the OS support. 

Our recent work, CEASER [6], enables LLC randomization in 

a practical manner by exploiting the insight that randomized map- 

ping of memory lines to cache locations can be accomplished ef- 

ficiently by accessing the cache with an Encrypted Line Address 

(ELA). The avalanche effect of encryption causes conflicting lines 

to get scattered throughout the cache sets, as shown in Figure 1(a). 

Given enough time, an adversary can launch a timing-based at- 

tack to determine the group of lines that map to the same set. To 

avoid this, CEASER periodically changes the keys and performs 

dynamic remapping of the cache from the old key to the new key. 

The remapping rate of CEASER is controlled by a parameter called 

the Remap-Rate (R). CEASER was analyzed with an attack kernel 

that represented the state-of-the-art in forming eviction sets [7], and 

this analysis showed that with a Remap-Rate of R = 1%, CEASER 

can tolerate years of attack while incurring negligible slowdown. 

The security analysis of CEASER is based on an attack pattern 

consisting of three steps, as shown in Figure 1(b). In Step-1, the 

attacker accesses the cache with L random lines with the aim of 

getting a conflict miss on one of the cache sets. When a conflict 

miss occurs, the attacker needs to identify which lines map to the 

conflicting set. In Step-2, the attacker applies a search algorithm to 

find the W + 1 conflicting lines (for a W-way cache) from the L 

lines. Once the conflicting lines are found, the attacker launches the 

conflict-based attack (Step-3) until the lines in the conflicting set get 

remapped. After remapping, the three steps are repeated. 

The objective of the search algorithm in Step-2 is to converge 

on the (W+1) conflicting lines from the L lines. This can be accom- 

plished by holding out one line from the L lines and testing the 

remaining (L-1) lines for a conflict miss. If the conflict miss occurs, 

the holdout line does not map to the conflicting set, otherwise it 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

197 

 

ELA 
Encrypt (E) 
 
 

Key (Epoch) 

      

· 

· 
· 

· · 

           

Line Address (LA) LLC 
 

 

Way−0   Way−1 

  

Way−0 
 

  

 
 
 
 
 
 
 

K1 K2 

 
 

(a) CEASER 
 

(b) Steps for Attacking CEASER 
 

(c) Eviction Set 
 

(d) Eviction Set in CEASER−S 

 

Figure 1: (a) Overview of CEASER, which uses encrypted address and remapping (b) Steps for attacking CEASER to find evictions 

set (c) Example of eviction set, (d) Our proposal, Skewed-CEASER (CEASER-S), which divides the cache ways into two partitions and 

allows the line to map to a different set in each partition (depending on the encryption key of that partition). Attacks on CEASER-S 

are much harder to orchestrate as the attacker needs to find lines that conflict with the target line "X" in both possible locations. 
 

does. Such an algorithm has been used to learn the bank mapping of 

shared caches in Intel architectures [7] and currently represents the 

best-known method of forming eviction sets. We call this algorithm 

Single Holdout Method (SHM). Note that SHM requires O L2 ac- 

cesses to determine the lines that map to the conflicting set, and 

these accesses must be completed within the remapping period of 

CEASER. Therefore, SHM limits the attacker to using small L. The 

probability that there will be a conflict miss when only a few random 

lines are present in the attack pattern is vanishingly small – this is 

the main reason why CEASER with a Remap-Rate of 1% is able 

to tolerate years of attacks. The security of CEASER is dictated by 

how quickly the adversary is able to form the eviction set. In this 

paper, we present two new attacks that significantly increase the 

state-of-the-art in forming eviction sets. 

Our first attack is based on developing a faster search algorithm. 

The key insight in our attack is that the attack pattern typically has 

several hundred lines, however, only a few lines (17 lines for a 16- 

way cache) map to the conflicting set. Rather than testing one line at 

a time, our method splits the L lines into G groups (each containing 

L/G lines). Then it holds out one group and tests the remaining (G-1) 

groups for a conflict miss – if the conflict miss happens, the entire 

holdout group is removed from L. We call this search algorithm 

Group Elimination Method (GEM). For a 16-way cache, GEM needs 

only 37 L accesses, which is 35x faster than SHM for a 1MB cache. 

To tolerate GEM, the Remap-Rate of CEASER must be increased 

from 1% to 35%, which would incur significant overhead. 

Our second attack is based on exploiting the replacement policy. 

Both SHM and GEM are agnostic of replacement policy, and simply 

rely on the fact that when (W+1) lines of the attack pattern are 

mapped to the same set of a W-way cache, and these lines are 

accessed again, there will be at least one conflict miss. Nonetheless, 

the attacker can use the replacement policy to avoid the search 

algorithm altogether. For example, if (W+1) lines are installed on 

a W-way set and then accessed again, then LRU replacement will 

cause misses for all the (W+1) lines mapping to the conflicting set, 

and these lines can be identified without any search algorithm (time 

reduced to 2 L instead of 37 L). Similarly, for Reuse-based policies 

(such as RRIP [8]), we can access each line twice before testing to 

obtain a vulnerability similar to LRU (time reduced to 3 L instead of 

37 L). If LRU/RRIP is used as the replacement policy for CEASER, 

the Remap-Rate of CEASER must be increased from 1% to more 

than 100% to tolerate these attacks, causing unacceptable overheads. 

Ideally, we want to make CEASER robust while retaining a low 

Remap-Rate. Our solution is inspired from the prior work on skewed- 

associative caches [9–12], which allows the line to map to a different 

set in each way. We propose Skewed-CEASER (CEASER-S), which 

divides the cache ways into multiple partitions, and uses a different 

set of encryption keys for each partition. Therefore, a given line 

maps to a different set in each partition, as shown in Figure 1(d). 

An access to CEASER-S probes both the partitions concurrently 

to determine the cache hit. On a miss, CEASER-S chooses one 

of partitions randomly and the replacement policy of that partition 

determines the install location of the incoming line. 

Figure 1(c) and (d) compares the eviction set of CEASER and 

CEASER-S with two partitions. To evict Line X from the two-way 

CEASER, we need two lines (A and B) such that they map to the 

same set as X. The probability that two random lines A and B map to 

the same set as X is 1/S2 (S is the number of sets). With CEASER-S, 

to dislodge a line X, we need two lines A and B such that they can 

dislodge X from both possible locations. The probability that A and 

B map to the same set in Way-0 and Way-1 as line X is 1/S4. 

We develop a model to analyze the time to attack CEASER-S 

and show that even with a Remap-Rate of only 1%, CEASER-S can 

tolerate years of attacks (even under idealized search algorithms). 

Our paper introduces new attacks that significantly increase the 

state-of-the art in forming eviction sets, and solves the vulnerability 

introduced by these new attacks using a simple and practical design. 

Overall, our paper makes the following contributions: 

(1) We present a new attack that significantly improves the state- 

of-the-art in forming eviction sets by reducing the search time 

for converging on the conflict list from O L2 to O L . This 

attack is 35x faster than the currently best known attack. 

(2) We present a new attack that leverages the replacement policy 

and avoids the search algorithm altogether. We show that 

popularly used replacement policies, such as LRU, RRIP, 

and Random,are all vulnerable. This attack would force the 

Remap-Rate of CEASER to be more than 100%. 

(3) We propose Skewed-CEASER, which combines skewed caching 

and CEASER to significantly improve the robustness. CEASER- 

S can tolerate years of attack with Remap-Rate of 1%. 

Our evaluation with 68 workloads shows that CEASER-S incurs 

negligible slowdown (within 1%). The newly added structures of 

CEASER-S incur a storage overhead of less than 100 bytes. 

A/B X X 

  

A B 

  

  

 

? 

1 Find "L" random lines, 
for confict miss in 1 set 

2 Use search algorithm, find 

"W+1" conflicting lines in L 

3 Launch conflict−attack, 
until lines get remapped 

LA 
Way−1 

E E 

X A/B 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

198 

 

Victim accesses X 

B 

B evicted 

 

  

{A,B,X} form "Eviction Set" 
 

 

Figure 2: Example of "Prime+Probe" attack. The attacker uses lines A and B to infer that the victim accessed Set 0. 

 

2 MOTIVATION AND BACKGROUND 

Our paper analyzes the robustness of randomized caching at mitigat- 

ing conflict-based attacks. In this section, we provide the background 

of the conflict-based attacks (Flush-based attacks are discussed in 

Section 8.3) and relevant schemes. 

 
 Conflict-Based Cache  Attacks 

In conflict-based attacks, the attacker tries to determine the cache 

2.3 CEASER: Algorithmic Randomization 

Our recent work, CEASER [6], enables randomized LLC in a prac- 

tical manner by exploiting the insight that randomized mapping of 

memory lines to cache locations can be accomplished efficiently 

by accessing the cache with an Encrypted Line Address (ELA), as 

shown in Figure 3. The avalanche effect of encryption causes con- 

flicting lines to get scattered throughout the cache sets. The ELA is 

visible only within the LLC, and the operations of rest of the memory 

system (such as coherence, prefetch, writeback) remain unchanged. 

sets have been accessed by a victim program. For example, in the 

Prime+Probe attack [13, 14], the attacker fills a cache set with its 

own lines (Prime step), waits for the victim to perform its accesses 

(Wait step), and then accesses the set again to determine which cache 

sets have been accessed by the victim (Probe step). Figure 2 shows 

an example of such a Prime+Probe attack on a two-way cache. The 

attacker places lines A and B in Set 0, and waits. The victim accesses 

a line (say line X) that maps to Set 0, which evicts line B. At a later 

time, the attacker accesses A and B, and measure the time. Given 

the long latency required for B, the attacker infers that the victim 

accessed Set 0. Knowing the access pattern of an application can be 

Line Address 
(LA) 

 
 
 
 
 
 
 

 
Figure 3: Overview of CEASER 

Writeback 
(Using LA) 

used to reveal secret information [1]. 

 
2.2 Table-Based Randomization 

Prior approaches for mitigating conflict-based attacks rely on either 

preserving the victim lines, or on randomized mapping of the victim 

lines to cache locations. Examples of preservation-based approaches 

include PL-Cache [2] (lock lines of sensitive application in the 

cache), Non-Monopolizable Cache [3] and DAWG [4] (reserve a 

few ways of the shared cache for each core). Such approaches can 

result in inefficient use of cache space, as cache may get reserved 

for the application regardless of the reuse characteristics of the lines. 

Randomization-based techniques rely on randomized mapping of 

the memory line to the cache set, thereby making it harder for the ad- 

versary to form an eviction set. Prior proposals [2, 5] used mapping 

tables to track the location of the line (or the set) in the cache. The 

disadvantage of such Table-Based Randomization schemes is that the 

mapping tables must scale linearly with the number of lines in the 

cache. While such tables can be implemented efficiently for small 

L1 caches [5], they become impractically large for a multi-megabyte 

LLCs. Furthermore, the effectiveness of these schemes relies on the 

OS-based classification of applications into protected and unpro- 

tected groups (otherwise, the mapping table can be attacked). To 

defend an 8 MB LLC, the overhead of the mapping table would 

be 1.25 MB (with OS support) and 8.5 MB (without OS support). 

Ideally, we want to avoid the significant storage overhead of large 

mapping tables and the reliance on the OS support. 

Given enough time, an adversary can launch a timing-based attack 

to determine the group of lines mapped to the same set. To avoid 

this, CEASER periodically changes the keys and performs dynamic 

remapping of the cache from the current key to the next key.1 The 

remapping rate of CEASER is controlled by the parameter Remap 

Rate (R). CEASER was analyzed with the currently best-known 

algorithm for forming eviction sets [7] and the analysis showed that 

even with a Remap-Rate of R = 1% (remapping one 16-way set every 

1600 cache accesses), CEASER can tolerate years of attack while 

incurring negligible performance overheads (approximately 1%). 

 Goal of this Paper 

In this work, we analyze the vulnerability of encrypted-address 

caches, such as CEASER, to attacks that can rapidly form evic- 

tion sets and analyze the impact this can have on the Remap-Rate. 

Specifically, we try to answer the following questions: 

(1) Can we develop attacks that can form eviction sets at a rate 

faster than the current state-of-the-art algorithm [7]? 

(2) What is the impact of cache replacement policy on the ability 

to form eviction sets quickly? 

(3) How can we defend against faster attacks while still retaining 

a negligibly small remapping overhead? 

We first describe our two new attacks to rapidly form eviction sets, 

and then a practical solution to defend CEASER against such attacks. 
 

 

1 The gradual remapping of CEASER is done at set-granularity, with one 16-way set 

getting remapped every 1600 accesses to the cache. For details, please refer [6] (Sec-IV). 

Attacker uses timing 

difference to learn 

Victim accessed Set 0 

 

Attacker accesses A&B 

 
miss for B 

 

B 

 

Attacker places A&B 
 

Set 0 
 

Set 1 

Key(t1) 

Keys Changed 
Periodically Key(t1) 

LA ELA ELA 

(Evicts) 

LA 
Encrypt Decrypt 

CACHE 

(Randomized) 

A B 

  

 

A X 

  

 

A 
 

  

 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

199 

 

    

           

· 

      

· 

 

 
(a) Single−Holdout Method (SHM) (b) Group−Elimination Method (GEM) 

 

Figure 4: SHM and GEM search for an attack pattern containing L=28 lines with A, B, and X mapping to the conflicting set. 
 

3 ATTACK-1: FAST SEARCH ALGORITHM 
The security analysis of CEASER is based on a pattern in which 

the cache is accessed with L random lines with the aim of getting a 

conflict miss on one of the sets. This is a trial and error step and is 

done until a conflict miss occurs. Even when a conflict miss occurs, 

the attacker still needs to identify which lines are mapped to the 

conflicting set. This is done using a search algorithm that takes the 

L lines as an input and returns the W + 1 conflicting lines for a W-

way cache. We first describe the search algorithm that was used to 

analyze CEASER. We then describe a new search algorithm that is 

substantially faster at forming the eviction set and reduces the 

complexity of search from O L2   to O L , where L is the number 

of lines in the attack pattern. We then discuss impact on the Remap- 

Rate of CEASER to tolerate these faster attacks. 

 Current Algorithm: Single-Holdout Method To 

determine the "W+1" conflicting lines in the "L" attack lines, the 

analysis in CEASER employed the state-of-the-art search algorithm 

that was used by Liu et al. [7] to learn the bank indexing function of 

Intel cache designs. We call this algorithm Single Holdout Method 

(SHM). The search process of SHM is based on holding out one 

line, and testing the remaining lines for a conflict. If the conflict 

happens, the holdout line does not map to the conflicting set and can 

be removed from the list. This process is repeated until the list has 

only "W+1" lines left, as shown in Algorithm 1. 

 

Algorithm 1: Single-Holdout Method (SHM) 

Input: L random lines that cause conflicts in 1 set 

Output: "W+1" lines that map to the conflicting set 

While (L has more than "W+1" lines): 

Hold out one line from L 

Test remaining (L-1) lines for a conflict 

If conflict occurs, remove holdout line from L 

    Return L  

 
Note that SHM requires O L2 accesses to determine the lines 

that map to the conflicting set and these accesses must be completed 

within the remapping period of CEASER (100 N, where N is the 

number of lines in the cache and CEASER uses a Remap-Rate of 

1%), otherwise the conflicting lines will get remapped to other sets 

and the attacker would be unable to form an eviction set. Therefore, 

SHM limits the attacker to attacking at most L = 
√

100 N lines 

(1280 lines for a 1MB cache bank containing 16384 lines). The 

probability that there will be a conflict miss when only a few random 

lines are allowed in the attack pattern becomes vanishingly small – 

this is the main reason why CEASER with a Remap-Rate of 1% is 

able to tolerate years of attacks. 

If a faster search algorithm is used, then the attacker may be able 

to accommodate a larger number of lines in the attack pattern, which 

would make it more likely for the conflict to occur, and the attacker 

to succeed within a shorter period of time. 

 Proposed: Group-Elimination Method 

Given L attack lines, the SHM algorithm holds back one line and 

tests the remaining (L-1) lines for a conflict. However, we note that 

out of the L lines (L is typically more than 1000), only a few lines 

will map to the conflicting set (e.g. 17 lines for a 16-way cache). We 

can make the search process more efficient by holding out a group 

of lines instead of just one line – in this way, we can discard the 

entire group if the remaining lines still cause a conflict, as it would 

mean none of the lines in the holdout group are necessary to cause a 

conflict miss. With this insight, we propose the Group-Elimination 

Method (GEM) search that is substantially faster at converging on 

the group of conflicting lines, and is shown in Algorithm 2. 

 

Algorithm 2: Group-Elimination Method (GEM) 

Input: L random lines that cause conflicts in 1 set 

Output: "W+1" lines that map to the conflicting set 

While (L has more than "W+1" lines): 

Split L into G groups 

For each of the G groups: 

Holdout the group 

Test remaining (G-1) groups for a conflict 

If conflict occurs, remove holdout group from L 

    Return L  

 
Note that if the number of groups (G) were set to be equal to 

L, then GEM will degenerate into SHM. Figure 4 explains the dif- 

ferences between SHM and GEM for an attack pattern containing 

28 lines (L=28) for a two-way cache (so, there are three conflicting 

lines, A, B, and X). With SHM, we hold 1 line and test the remaining 

27 lines for a conflict. This will eliminate only one line (left most). 

Hold 
A B X 

(after 1 test, 27 lines left) 
 

(after 7 tests, 22 lines left) 

Group 
A B X 

(after 1 test, 24 lines left) 
 

(after 7 tests, 12 lines left) 

}
 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

200 

 

           

· · 

L 

 

After 7 trials, we would be left with line "A" + 21 remaining lines. 

With GEM, we form 7 groups of 4 lines each. We hold one group 

and test the remaining 6 groups for a conflict. In the first test, the 

left-most group is eliminated. After 7 tests, all the groups that are 

shaded get eliminated and only 12 lines remain (the three groups 

containing A, B, and X). Thus, GEM is able to remove 2x more lines 

after 7 trials compared to SHM, and this efficiency only increases 

when there are thousand(s) of lines in the attack pattern, as would 

be expected for a multi-megabyte LLC. 

 

 Analytical Model for GEM Search 

The effectiveness of GEM search depends on the group size. If 

the group size is too small, GEM becomes similar to SHM. If the 

group size is too large, then the likelihood of the group containing a 

conflicting line increases and it makes it less likely that the group will 

get eliminated from consideration (therefore dividing the number of 

attack lines into only two groups is not a useful option for a highly 

associative cache). To keep the algorithm simple, we set the number 

of groups (G) equal to the number of conflicting lines (W+1). The 

lines that form a group are selected randomly from L. 

With G=(W+1), each group will have L/(W+1) lines, and the 

probability that the group does not contain any conflicting lines is 

given by Equation 1. 

 Implications of GEM on CEASER 

With GEM search, the attacker can form eviction sets quickly and 

the remapping rate of CEASER must be adjusted to take this fast 

search algorithm into account. Furthermore, for a given level of 

associativity, the GEM search reduces the time complexity of search 

from O L2 to O L , which means that larger caches do not auto- 

matically become significantly more robust with CEASER as the 

time complexity of search is linear instead of quadratic. Table 1 

shows the time for the attack to succeed for an 8MB LLC and a 1MB 

LLC-Bank with GEM for different Remap-Rate.4 We use CEASER 

with a default Remap-Rate of 1% and SHM. The model for attack 

time is similar to that used in our prior work [6]. 

Table 1: Time for Attack to Succeed with CEASER under SHM 

and GEM search and Remap-Rate (R). Note that CEASER re- 

mains vulnerable only until the next remap (< 1 millisecond). 

Prob
 

Con f lict f ree Group
 

= 1 −

 
W + 

 
    L  
W +1 1 

≈ 
e
 (1) Thus, to tolerate GEM search, the Remap-Rate of CEASER must 

be increased to 35%. This would mean remapping a 16-way set 

Thus, the probability that the group gets eliminated after being 

held out is approximately equal to 1/e (approximately 37%) for large 

L. After (W+1) trials, we would have tested each group, and the 

list is expected to shrink by 37% to 63%. This process is repeated 

iteratively until L reduces to (W+1) lines.2 The total number of 

accesses for GEM to converge on the list of the conflicting lines is 

given by Equation 2. 

 
Total Accesses = L · W ·

 
1 + 0.63 + 0.632 + 0.633 + ...

 
(2) 

The number of terms that must be accounted in the above equation 

depends on the rounds it takes for L to reduce to (W+1). For the 

range of L that is suitable for modern LLCs, the total number of 

accesses is approximately equal to 2.3 W L. For a cache with 16 

ways, if the attacker starts with L lines then the number of accesses 

to learn the confl ict l ist with GEM is approximately equal to 37 · L 

  

every 50 accesses to the cache. Each remap incurs reading the line, 

invaliding the original location of the line, and writing the remapped 

line into a new set. Under a Remap-Rate of 35%, the cache active 

power almost doubles, there are significantly more misses due to 

remapping, and there is longer latency due to increased cache con- 

tention. Our evaluations show that increasing the remapping rate of 

CEASER to 35% incurs an average slowdown of 6%. Ideally, we 

want to have randomized caches without incurring significant over- 

head due to remapping. Unfortunately, even if we were willing to 

pay for this significant overhead, the system may still not be secure 

to newer and faster attacks, which we discuss next. 

4 ATTACK-2: EXPLOIT REPLACEMENT 

POLICY TO OBVIATE SEARCH 

Our second attack is based on exploiting the cache replacement 

policy to avoid the search algorithm. Both SHM and GEM are 

agnostic of the replacement policy, and simply rely on the fact that 

 
be in the range of thousand(s) to have a non-negligible probability 
of causing a conflict miss in one of the cache set, GEM provides 

a significant reduction in search time (almost 35x faster for 1MB 

cache bank and 300x faster for an 8MB cache).3 

 
2 When the number of lines (L) in the attack becomes small (approximately 2.7 · W , or 

set of a W-way cache, and accessed again, there will be at least 

one conflict miss. While this approach general and is applicable to 

arbitrary replacement policies, it is less efficient than an approach 

that exploits the replacement policy to launch an even faster attack. 

In this section, we show how faster "search-free" attacks are possible 

for popular replacement policies, such as LRU, RRIP, and Random. 
equivalently 44 lines for a 16-way cache), SHM becomes faster than GEM. When this    
threshold is reached, we set the number of groups (G) in GEM to L. 
3 We cannot prove the optimality of GEM. It is a valid question to ask whether there are  

substantially faster search algorithms compared to GEM. We were also curious to know,  

so, on Oct 5, 2018, we published a modified version of this problem (find "S" spies in 

"K" agents) on a website that regularly publishes mathematical puzzles [15]. The puzzle 

received several responses, however, even the best solutions had efficiency similar to 

GEM. This gives us some confidence that it is non-trivial to improve on GEM search. 

4 Note that the vulnerability with CEASER lasts only until the lines get remapped, so 

even when the attacker succeeds, this success is short-lived. The total time required to 

remap all the lines in CEASER is in the order of a few milliseconds and the attacker 

is forced to use most of this time to learn the eviction sets. Therefore, the numbers 

shown in Table 1 denote a vulnerability of less than 1 millisecond for a given attack 

period. For example, for a 1MB LLC-Bank with Remap-Rate of 10%, CEASER would 

be vulnerable for less than 1 millisecond every 3 minutes. 

when (W+1) lines of the attack pattern are mapped to the same with SHM algorithm. Given that L needs to as opposed to O 

 !
1
 

L2 

Remap-Rate (R) Search 8 MB LLC 1 MB Bank 

1% GEM < 1 second < 1 second 

10% GEM 27 minutes 3 minutes 

20% GEM 9 days 1 day 

30% GEM 23 years 3 years 

35% GEM > 100 years 20 years 

1% (default) SHM > 100 years > 100 years 

 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

201 

 

· 

· 

· 

· · 

 Attack Using LRU Policy 

If CEASER is implemented using a cache that employs LRU, then 

the attacker can leverage the thrashing property of LRU to avoid 

the search. For example, if the attack contains "L" lines that cause 

a conflict in one of the set, then the attacker will first access all the 

L lines, and then test these lines for hit/miss in exactly the same 

 

 
Set−0 

Set−1 

Set−2 

Set−N 

 
Way−0 Way−1 
 

 D 

A B 

  

C  

 
Attack Pattern 

(install and upgrade) (test hit/miss) 

AA−BB−CC−DD−XX A−B−C−D−X 

 

3 misses 

sequence. For a W-way cache, the pattern will have at-least "W+1" 

misses, and all of the missing lines will be from the conflicting 

set. So, after just 2 L accesses, the attacker will have the list of 

conflicting lines, without the need for any search algorithm. 

Figure 6: Fast attack by exploiting RRIP policy. The attack 

needs 3L accesses and avoids a search algorithm. 

 
4.3 Attack Using Random Replacement 

Way−0 Way−1 Attack Pattern Both LRU and RRIP policies maintain a precise ordering of lines, 
Set−0 (install) (test hit/miss) and the attacks exploit the properties of these orderings. One may 

Set−1 

Set−2 

Set−N 

A−B−C−D−X   A−B−C−D−X 

 
3 misses 

deem that we can avoid the vulnerability from replacement policies 

by simply using a random replacement policy, which avoids any 

ordering of lines within the cache set – so it would be much harder 

for the adversary to form a list of conflicting lines. We show that a 

Figure 5: Fast attack by exploiting LRU policy. The attack 

needs 2L accesses and avoids a search algorithm. 

 

We explain this attack with an example. Figure 5 shows a 2-way 

cache, where a pattern of 5 lines (A, B, C, D, X) is enough to cause 

conflict in one of the sets. The attacker will first access these five 

lines (A-B-C-D-X) to ensure that they are installed in the cache. 

Then the attacker will sequentially test if each line is present in the 

cache. There will be hits for lines C and D, and misses for lines A, 

cache with random replacement policy is still vulnerable to attacks. 

Figure 7 shows the attack that uses the properties of random 

replacement to avoid the search algorithm. The attacker installs the 

given line "X" in the cache. Then the attacker installs a random line 

(Y) and tests if X is still present. There is a probability p = 1N (N 

is the number of lines in the cache) that Y will evict X. If there is 

a miss for X, we know that Y conflicts with X, so we add Y to the 

conflict list. This process is repeated until the list has W elements. 

B, and X. The lines that miss form an eviction set. 

The attack exploiting LRU replacement is an order of magnitude 

faster than the GEM search. To tolerate this attack, the Remap-Rate 

of CEASER must be increased to more than 600% – remapping 6+ 

lines on every access to the cache, incurring impractical overheads. 

 
Set−0 

Set−1 

Set−2 

Set−N 

Way−0 Way−1 

  

X  

  

  

Attack Pattern 

4.2 Attack Using Reuse-Based Policies 

When the number of lines exceed the capacity of the set, LRU is 

known to cause a thrashing like pattern. Several cache replacement 

policies have tried to address this behavior [8, 16–20]. Such replace- 

ment policies give preference to lines that have high reuse and try 

to do early eviction of lines that have low reuse. Without loss of 

generality, we will use RRIP [8] as the representative example. 

The idea behind developing an attack using RRIP is to access 

each line in the access pattern twice. This ensures that the line gets 

promoted to a high-priority state, and the replacement policy would 

degenerate into something akin to LRU. We explain this attack with 

an example. Figure 6 shows a 2-way cache, where a pattern of five 

lines (A, B, C, D, X) is enough to cause conflict in one of the sets. 

The attacker will first access these five lines, each two times, to 

ensure that they are installed in the cache and upgraded to the high- 

priority state. Then the attacker sequentially tests if each line is 

present in the cache. There will be hits for lines C and D, and misses 

for lines A, B, and X. The lines that miss form an eviction set. This 

attack is equally applicable to replacement policies that are built on 

PC information (e.g. SHIP [17]) as the second access will update 

the line to high-priority state, regardless of the state at install. 

To tolerate the attack exploiting RRIP, the Remap-Rate of CEASER 

must be increased to more than 500% – remapping 5+ lines on every 

access to the cache, incurring impractical overheads. 

Figure 7: Fast attack by exploiting Random policy. 

 
On average, it will take the attacker 2 W N accesses to form the 

conflict list (32 N for a 16-way cache). The number of accesses in 

this attack pattern is smaller than the number of accesses possible 

(100 N) during the remapping period of CEASER with a default 

Remap-Rate of 1%. Thus, CEASER with the default Remap-Rate 

remains vulnerable to an attack under a Random Replacement policy, 

albeit this vulnerability is not as severe as with LRU or RRIP. 

4.4 Implications of Attacks on CEASER 

To avoid the vulnerability due to replacement policies, a designer 

may try to combine random replacement and LRU/RRIP to make 

attacks harder, however, the robustness of such a scheme will again 

depend on the details of the implementation. Note that, even for any 

arbitrary replacement policy (the details of which are not known 

to the attacker), the attacker can always use GEM to determine the 

conflicting lines and this would necessitate a Remap-Rate of 35%. 

Ideally, we want to be able to use any replacement policy for 

CEASER (without being concerned about its impact on the security), 

have a low remapping rate (no more than a few percent), and still 

have strong security (able to tolerate years of attack). We discuss 

such a robust and practical design next. 

X 

X 

X − RandLine − X 

if (Second X is a miss) 

Add RandLine to List 

 D 

A B 

  

C  

 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

202 

 

5 SKEWED-CEASER 

An attack on CEASER consists of three parts: First, form L lines 

such that there is one set that has a conflict. Second, obtain a list of W 

conflicting lines (for a W-way cache) that can evict the given address 

from the cache. Third, use this conflict list to launch a conflict-based 

attack on the victim. The process of learning the conflict list must 

be repeated after remapping. The key challenge with the attacks 

described in Section 3 and Section 4 is that they can learn the list of 

conflicting lines quickly, and to avoid this we needed to significantly 

increase the Remap-Rate of CEASER. Our solution for secure and 

low-overhead extension of CEASER is inspired from Seznec’s work 

on skewed-associative caches [9]. 

 Flexibility of Skewed Caches 

In a conventional set-associative cache, each way of the cache uses 

the same function to hash the line address to the set. CEASER is 

built on top of a set-associative cache, therefore, it suffers from 

the same limitation, in that all the ways of the cache use the same 

indexing function to map the encrypted line to the set of CEASER. 

In a skewed-associative cache, each way of the cache uses a different 

hashing function, so a given line can map to different sets in different 

ways. For example, as shown in Figure 8(b), the skewed cache uses 

two hashing functions h1 and h2 to index the respective ways of 

the cache. A given line X could be located in Set-1 for Way-0 but 

Set-2 for Way-1, based on the different hashing functions. While 

skewed-cache reduces conflict misses when the cache has lower 

associativity, its effectiveness reduces when the cache is highly 

associative. Therefore, modern designs of highly-associative LLC 

typically do not opt for a skewed organization (for example, our 

evaluations show that implementing the baseline 8MB 16-way LLC 

as a skewed-associative cache provides less than 0.1% speedup). 

 

Let there be S sets in the cache. To evict the target line X from 

the two-way set associative cache, we will need two lines (A and 

B) such that they map to the same set as X. Let us pick two random 

lines, A and B to form an eviction set for X. The probability that two 

random lines A and B map to the same set as X is 1/S2. Therefore, 

the probability that we can dislodge X with two random lines in a 

set-associative cache is 1/S2. In such a scenario, we can use A-B to 

repeatedly dislodge X from the set-associative cache. 

For the skewed-cache, let us again pick two random lines, A and B, 

to form an eviction set with X. However, to be able to guarantee that 

line X is evicted from the skewed cache, we will need the two lines A 

and B such that they can dislodge X from both possible locations.5 

The probability that A and B map to the same set in Way-0 and 

Way-1 as line X is 1/S4. Thus, skewed-cache can offer S2 resilience 

in robustness compared to the set-associative implementation. Given 

that modern LLCs have thousand(s) of sets, this represents several 

orders of magnitude improvement in robustness. 

 Limitations of Static Hashing 

Note that the security of the skewed-cache design depends on the 

unpredictability of the hashing functions. Skewed cache is typi- 

cally implemented with static hashing functions (that stay constant 

throughout the machine up-time and across different machines). 

Such hashing functions can be learned by an adversary and then it 

would be easy to attack the skewed-cache design. For example, if the 

attacker knows the hashing functions, h1 and h2, then the attacker 

will form the attack pattern using only the lines that go to the same 

set as the target address under both h1 and h2. Thus, for security, it 

is important that the hashing functions of skewed-cache are both (a) 

unpredictable and (b) dynamically changing. We combine the princi- 

ples of skewed-cache and CEASER to form a robust and practical 

design, called Skewed-CEASER (CEASER-S), while obviating the 

 

Set−0 

Set−1 

Set−2 

... 

Way−0 Way−1 

  

Way−0 

 

 

 

Way−1 

  

need for defining unpredictable and dynamic hash functions. 

 Design of Skewed-CEASER 

Similar to skewed-cache, CEASER-S allows each line to get mapped 

to different sets, depending on the way in which the line in resident. 

However, unlike skewed-cache, CEASER-S uses multiple instances 

(a) Set−Associative Cache (b) Skewed−Associative Cache of CEASER, instead of hashing functions, to determine the set map- 

pings. CEASER-S divides the cache ways into multiple partitions, 

Figure 8: Forming eviction sets with (a) Set-Associative Cache 

(b) Skewed-Associative Cache, with two hashing functions h1 

and h2. The conflicting lines A and B must dislodge the target 

line "X" from both possible locations under h1 and h2. 

 

5.2   Robustness Due to Multiple Locations 

While skewed-cache has negligible impact on performance of a 

highly associative cache, they provide an important property – each 

line can be resident in multiple possible sets, therefore the groups 

of lines with which the given line may conflict keep changing de- 

pending on the way in which the line is resident. This property has 

important security implications, as it will make it much harder for 

the adversary to form an eviction set, as the eviction set depends on 

the way in which the line is resident. Figure 8(a) and (b) shows the 

eviction set for the target line "X" for a set-associative cache and a 

skewed-associative cache, respectively. 

and uses a different set of encryption keys for each partition, there- 

fore the given line gets mapped to a different set in each partition. 

The default CEASER-S design contains two partitions, whereas, the 

design can be generalized into P partitions (each containing W/P 

ways) and is denoted as CEASER-SP. For example, CEASER-S de- 

sign with four partitions would be denoted as CEASER-S4. Note that 

CEASER-S1 would be the same as the original CEASER design. 

For simplicity, we describe the organization of CEASER-S as- 

suming two partitions. The baseline set-associative cache has S sets 

and W ways. CEASER-S would logically split the cache into two 

halves: Left and Right, each containing S sets and W/2 ways. Each 

half implements CEASER with different sets of encryption keys, 

therefore a given line will map to a different set in each partition. 
 

 

5 If one of the lines (say line A) conflicts with X only in Way-0 but not in Way-1, then if 

the pattern of A-B is repeated, then A can get mapped to a non-conflicting location in 

Way-1. This will mean only two lines, B and X, will be contending with each other and 

both can reside conflict-free in the two ways of a skewed-cache. 

X 

 

 

A/B 

 

 

X X 

  

A B 

  

  

 

Addr 

h2 h1 A/B 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

203 

 

    

N 

k=0 k 

 

 
hit/data hit/data 

Figure 9: CEASER-S: The 16-way cache is logically split into two halves: left and right, each containing 8 ways. Each half operates 

as an independent 8-way CEASER with a different set of encryption keys (so a line gets mapped to a different set in each half). 

 

Organization: Figure 9 shows an overview of CEASER-S. The 

16-way baseline cache is split into two 8-way caches, and CEASER 

is implemented in each half using an independent set of keys. Note 

that an implementation of CEASER with gradual mapping requires 

two keys (CurrKey and NextKey). The left half uses keys L-CurrKey 

and L-NextKey, and the right uses R-CurrKey and R-NextKey. 

Access: On an access to a convention cache, all the W-ways of the 

 

 

All lines are guaranteed to undergo remapping within the time 

period equal to one Epoch. Therefore, E bounds the available time for 

the attacker to converge on at-least W lines that have a hard conflict. 

The probability that there are W or more hard-conflict lines in E 

accesses is given by a binomial distribution as shown in Equation 5. 

 

Prob
 
≥W in E

  
= 1 − Σ

k=
 
W−1

      
E

  

· Pk ·
 

1 −P
 E−k 

(5) 

number of checks remains the same as the baseline W-way cache). 

Hit: If there is a hit in either half, the cache returns the data from 

the line that had the hit and updates the replacement state. 

Miss: On a miss, CEASER-S randomly picks the half in which to 

install the line. As each half has eight ways, the victim is decided by 

the replacement policy (LRU, RRIP, SHiP etc.) of the chosen half. 

Remapping: For controlling the remapping of CEASER-S, we use 

the same parameter, Remap-Rate (R) and perform remapping at a 

set granularity. With the default Remap-Rate of 1% and a 16-way 

cache, after 1600 accesses, one set gets remapped in each half. 

5.5 Security Analysis of CEASER-S 

In this section, we analyze the security for the default implementation 

of CEASER-S with two partitions (we note that CEASER-S becomes 

even more robust with more partitions). We want CEASER-S to be 

robust to any search algorithm and replacement policy. Therefore, 

we keep the security analysis of CEASER-S independent of these 

two choices. For an adversary to repeatedly evict a given address 

with W conflicting lines, the adversary needs to find W lines such 

that they conflict with the target address in both the Left-Cache 

and Right-Cache of CEASER-S (if the line conflicts in only one 

half, then half of such lines are expected to get mapped to a non- 

conflicting set in the other half and will not participate in evictions). 

We call such a line that conflicts on both locations as a hard-conflict 

line. If the cache has S sets, the probability that a random line will 

have a hard conflict is given by Equation 3. 

Assumptions: To derive the time for a successful attack, we make 

three assumptions: (1) It is sufficient to simply have W hard conflicts 

in the attack pattern, without needing to identify which lines are hard 

conflicts (so, we assume an idealized search algorithm). (2) No other 

application accesses the cache during the epoch period (otherwise, 

the attacker can only do a reduced fraction of the accesses in the 

epoch). (3) The attacker has enough time to not only form an eviction 

set but also to attack the victim (if most of the epoch goes in forming 

an eviction set, it would leave little time to attack). 

Even when an attacker succeeds in forming an eviction set, this 

vulnerability gets removed when the lines get remapped. Given that 

it takes a few milliseconds to remap the entire cache and the attacker 

is forced to spend most of the time in learning the eviction set, 

the window of vulnerability is quite small (1 millisecond or less). 

Table 2 shows the time for a successful attack, as the Remap-Rate of 

CEASER-S is varied from 1% (default) to 0.1%. We perform this 

analysis for both the baseline 8MB cache and a 1MB bank (attacker 

focuses on one bank, CEASER-S implemented per bank). 

Table 2: Vulnerability of CEASER-S (approximately 1 milli- 

second of vulnerability every period of successful attack) 

 

Remap-Rate (R) 8MB LLC 1 MB Bank of LLC 

1% (default) 1 ms every 100+ years 1 ms every 18 years 

0.5% 1 ms every 100+ years 1 ms every day 

0.1% 1 ms every 68 years 1 ms every second 

1 
P = Prob HardCon f lict = 

S2 (3) 

Given a Remap-Rate of R and a cache containing N lines, the epoch 

(E) of CEASER-S is given by Equation 4. 

E pochPeriod
 

E
 

= 
R 

(4) 

Thus, even under the severely conservative assumptions, and the 

default Remap-Rate of 1%, CEASER-S can tolerate years of continu- 

ous attacks (providing a vulnerability of approximately 1 millisecond 

every 18 years). Note that CEASER-S provides two degrees of free- 

dom – the robustness of CEASER-S can be enhanced even further 

by increasing the Remap-Rate, or the number of partitions, or both. 

cache are checked for a hit. In CEASER-S, the W/2 ways in each 

of the left-half and the right-half are checked concurrently (so the 

Line Addr (X) 
Left−Half (CEASER) Right−Half (CEASER) 

Way0−Way7 
L−CurrKey R−CurrKey 

Way8−Way15 

Encryptor Encryptor 

L−NextKey R−NextKey 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

204 

 

 

 
100 

99 

98 

97 

96 

95 

Baseline CEASER CEASER-S2 CEASER-S4 CEASER-S8 
 

 

SPEC-INT(12) SPEC-FP(17) Graph (5) Mix (34) Gmean-All (68) 
 

Figure 10: Normalized performance of CEASER and CEASER-S (with different number of partitions) with respect to the baseline. 

The number beside the category denotes the number of workloads in that category. CEASER-S2 and CEASER-S4 incurs an average 

slowdown of 0.7% and 1.0% respectively across all workloads (unlike baseline and CEASER, they can tolerate years of attack). 

 

6 EXPERIMENTAL METHODOLOGY 

 Configuration 

We use a Pin-based x86 simulator with a detailed memory model. 

Table 3 shows the configuration used in our study. The L3 cache is 

8MB shared between all the cores and incurs a latency of 24 cycles. 

All caches use a linesize of 64 bytes. For all implementations of 

CEASER and CEASER-S, we use a latency of two cycles for en- 

cryption and decryption. The default Remap-Rate for both CEASER 

and CEASER-S is assumed to be 1% (one 16-way set gets remapped 

every 1600 accesses to the LLC). For all LLC implementations, 

including the baseline, we use the SRRIP policy. 

 

Table 3: Baseline Configuration 

 
Processor 

Core parameters 

L1 and L2 cache 

8-cores, 3.2GHz 

32KB, 256KB 8-way (private) 

Last Level Cache 

L3 (shared) 8MB, 16-way, 24 cycles 

SRRIP [8] replacement policy 

DRAM Memory-System 

Bus frequency 

Channels 

tCAS-tRCD-tRP-tRAS 

800 MHz (DDR 1.6 GHz) 

2 (8-Banks each, 2KB row buffer) 

9-9-9-36 

 

 Workloads 

We use a diverse set of workloads for our study, including all the 

29 workloads from the SPEC2006 benchmarks suite and five work- 

loads from the GAP benchmark suite [21]. For each benchmark, we 

use a representative slice [22] of one billion instructions. These 34 

benchmarks are run in rate-mode where each core runs a copy of the 

benchmarks. Additionally, we use 34 mixes formed using random 

combinations of the 34 benchmarks. 

We perform timing simulation until all benchmarks in the work- 

load finish executing a minimum of one billion instructions. For 

measuring aggregate performance, we use the weighted speedup. 

We report normalized performance as the ratio of weighted speedup 

of the given design to the baseline. 

7 RESULTS 

 Impact on Performance 

Figure 10 shows the performance of CEASER and CEASER-S 

(with the number of partitions varying from 2 to 8). Note that the 

performance is normalized to the baseline (so higher is better, and 

100% denotes no degradation). We report the geometric mean across 

the workload suites. Overall, across all 68 workloads, CEASER 

causes an average degradation of 1% whereas the default CEASER- 

S (with two partitions) causes a degradation of 0.7%. With more 

partitions the overhead of CEASER-S increases, becoming 1% for 

four partitions (CEASER-S4) to 2% for eight partitions (CEASER- 

S8). This happens because, with a larger number of partitions, each 

partition gets a reduced number of ways, and this limits the ability 

to employ intelligent replacement policies to select the best victim 

within the partition. For example, CEASER-S16 would degenerate 

the cache into using random replacement, as the victim partition 

would get selected randomly and the partition would contain only 1 

way. We recommend using CEASER-S with 2 to 4 partitions. We 

use two partitions in our default implementation of CEASER-S. 

 Sensitivity to Remap-Rate 

We use a default Remap-Rate (R) of 1% and show that this rate is 

sufficient to provide strong security (tolerate years of attack) and that 

the performance overhead with this rate of remapping is quite small 

(within 1%). Figure 11 shows the performance of CEASER-S when 

the Remap-Rate is increased from 1% to 10%. At lower Remap-Rate, 

the performance impact is negligibly small. 

 
100 

99 

98 

97 

96 

95 
R=1% R=2% R=3% R=4% R=5% R=10% 

 
Figure 11: Impact of Remap-Rate (R) on CEASER-S. 

CEASER-S 

N
o

rm
. 
P

er
fo

rm
a

n
ce

 (
%

) 

N
o

r
m

. 
P

e
r
fo

rm
a

n
c
e 

(%
) 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

205 

 

≤ 

 Impact on Cache Misses 

CEASER affects cache misses due to randomization (which can 

affect conflict misses, either positively or negatively) and remapping 

(the remapped line may evict a useful line from the remapped set). 

We analyze the impact of CEASER and CEASER-S on the MPKI 

(misses per 1000 instructions) of the LLC. Table 4 shows the MPKI 

of the baseline 8MB LLC, CEASER, and CEASER-S for the 34 

rate-mode workloads. 

 
Table 4: Impact of MPKI of LLC (8MB). 

 Sensitivity to LLC Capacity 

Our default configuration contains an 8MB shared LLC. Figure 12 

shows the performance of CEASER and CEASER-S when the capac- 

ity of LLC is varied from 8MB to 64MB (performance is normalized 

against the baseline with an equal-capacity LLC). Across all LLC 

sizes, the average slowdown of CEASER-S is between 0.7% and 

1.5%. The increased slowdown at large LLC happens mainly because 

the 2-cycle decryption latency plays a larger role when the execution 

time gets reduced due to the higher hit-rate of the larger LLC. 

 
100 

99 

98 

97 

96 

95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
For sphinx3, randomization causes the MPKI to get reduced from 

11.6 in the baseline to 11.1 with CEASER and 11.2 with CEASER-S, 

and this reduction in MPKI results in slight performance improve- 

ment compared to the baseline. For other workloads, the impact 

on MPKI is negligible. Overall, similar to CEASER, CEASER-S 

increases the average MPKI of the baseline from 19.5 to 19.6. 

8MB 16MB 32MB 64MB 

Figure 12: Impact of LLC-Capacity on Overheads. 

 
 Implications on Energy and Power 

The power overheads of CEASER-S comes from the encryption 

circuit, the remapping of lines (one line per 100 access), and the 

extra misses (0.4% extra memory accesses). With CEASER-S, the 

overall system power increases by approximately 0.3% and the 

overall system energy by less than 1% (mainly due to the slowdown). 

 Logic and Storage Overheads 

With CEASER-S, the cache is logically operated as two half-sized 

caches, each requiring the overheads of CEASER. CEASER re- 

quires two block-cipher circuits and selection logic to select between 

these two circuits. The logic overhead of CEASER (for the two 

block-cipher circuits and the selection logic) is less than 3500 two- 

input gates, which is quite small (similar to computing SECDED 

code for a 64-byte line). CEASER-S doubles the logic overheads to 

approximately 7000 gates, which is still negligibly small. 

Similar to CEASER, CEASER-S requires the 1-bit Epoch-ID 

with each line (to identify whether the CurrKey or the NextKey 

was used). Each half also needs storage for the global metadata 

such as two keys (80 bits each), a SetPointer, and an access counter, 

for a total overhead of 24 bytes. So the total storage overheads of 

CEASER-S gets doubled to 48 bytes, which is still quite small. 

 CEASER-S with More Partitions 

We describe a default CEASER-S design with two partitions, where 

each partition has half the number of ways. This design allows each 

line to map to two possible locations and we found that such a 

design is sufficient for strong security. The CEASER-S design can 

be generalized to P partitions (P W, where W is the number of 

ways in the cache), with each partition containing W/P ways. With 

increased P, the design offers even more robustness as a line can 

map to P possible sets and the attacker will need to dislodge the line 

from all of the possible locations. The logic and storage overheads 

of this design increases in proportion to P. Note that, even with four 

partitions, the storage overhead remains less than 100 bytes. 

CEASER CEASER-S 

N
o
r
m

. P
e
r
fo

r
m

a
n

c
e
 (

%
) 

Workload Baseline CEASER CEASER-S 

astar 0.5 0.7 0.5 

bwaves 18.7 18.7 18.7 

bzip2 3.5 3.8 3.7 

cactusADM 5.3 5.2 5.2 

calculix 0.0 0.0 0.0 

dealII 2.4 2.4 2.4 

gamess 0.0 0.0 0.0 

gcc 16.6 16.9 16.7 

GemsFDTD 9.8 9.8 9.8 

gobmk 0.4 0.4 0.4 

gromacs 0.5 0.6 0.6 

h264ref 0.5 0.6 0.6 

hmmer 0.5 0.8 0.7 

lbm 31.9 31.9 31.9 

leslie3d 7.6 7.6 7.6 

libquantum 25.4 25.4 25.4 

mcf 67.8 69.0 69.0 

milc 25.8 25.6 25.6 

namd 0.1 0.1 0.1 

omnetpp 21.0 21.2 21.2 

perlbench 0.8 0.8 0.8 

povray 0.0 0.0 0.0 

sjeng 0.4 0.4 0.4 

soplex 26.9 26.9 26.9 

sphinx3 11.6 11.1 11.2 

tonto 0.1 0.1 0.1 

wrf 6.6 6.6 6.6 

xalancbmk 2.2 2.2 2.2 

zeusmp 4.8 4.8 4.8 

BC 84.5 84.6 84.5 

BreadthFS 37.2 37.3 37.3 

ConnComp 85.8 86.0 86.0 

PageRank 46.0 46.2 46.2 

SSSPath 118.8 119.0 119.0 

Average 19.5 19.6 19.6 

 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

206 

 

8 RELATED WORK 

Our paper analyzes the robustness of randomized caches at mitigat- 

ing conflict-based attacks. We discuss the closely related work. 

 

 Randomization-Based Mitigation 

Randomization-based techniques rely on randomized mapping of the 

memory line to the cache, thereby making it harder for the adversary 

to form an eviction set. CEASER [6] uses encrypted address and 

remapping for cache randomization. Prior proposals [2, 5] use map- 

ping tables to track the location of the line in the cache. While such 

tables can be implemented efficiently for small L1 caches (using 

CAM lookups [5]), they become impractically large for a multi- 

megabyte LLCs. Furthermore, such Table-Based Randomization 

(TBR) schemes need OS to classify applications into protected and 

unprotected groups (otherwise, the mapping table can be attacked). 

Table 5 shows the storage overheads of TBR with OS support 

(shared mapping table), TBR without OS support (private per-core 

mapping tables), CEASER, and CEASER-S. TBR requires map- 

ping tables exceeding 1MB (with OS support) or exceeding 8MB 

(if no OS support is provided). CEASER-S not only incurs negli- 

gible storage but also avoids the latency of looking up large tables. 

Furthermore, CEASER-S provides stronger security than CEASER. 

Table 5: Storage Overhead for Additional Structures 
 

Scheme Storage Overheads 

(for 8MB LLC) 

Table-Based (with OS support) 1.25 megabytes 

Table-Based (without OS support) 8.5 megabytes 

CEASER (OS support not required) 24 bytes 

CEASER-S (OS support not required) 48 bytes 

A concurrent work [23] (published at IEEE S&P 2019) looks 

at the theory and practice of finding eviction sets in a randomized 

cache. This work also developed an efficient algorithm for learning 

eviction set that is similar to GEM. In our paper, we not only propose 

the GEM attack but also another attack (based on exploiting the 

replacement policy), which is an order of magnitude faster than 

GEM. We also show that our proposed solution of CEASER-S is 

robust to both these attacks. 

 

 Isolation-Based Mitigation 

Isolation-based techniques rely on preserving the data of the victim 

application, by making it harder for the attacker to evict the data of 

the victim application. This is typically done by allocating dedicated 

cache space to protected (security-sensitive applications) [2][24][25]. 

Non-Monopolizable (NoMo) Cache [3] and Dynamically-Allocated 

Way Guard (DAWG) use way partitioning to isolate the cache allo- 

cated to different cores. The efficacy of these schemes relies on the 

ability of the OS to carefully classify applications. Ideally, we want 

to mitigate attacks without relying on any OS or software support. 

Note that techniques that rely on way-partitioning can result in 

inefficient use of cache space, as cache resources may get allocated to 

the applications, regardless of the reuse characteristics. Furthermore, 

way partitioning is limited in scaling by the number of ways and 

starts to become effective when the number of cores exceeds the 

number of ways in the cache (e.g. 32-core chip with a 16-way LLC). 

 Tolerating Flush-Based Cache Attacks 

Our paper is focused on mitigating conflict-based attacks. However, 

the attacker can use the clflush instructions to explicitly evict the 

lines that are shared between the attacker and the victim. Techniques 

that use randomization alone are ineffective against Flush-based 

attacks, as the attack is insensitive to the location of the line in 

the cache. Instead, to mitigate Flush-based attacks, prior studies 

advocate duplicating the shared line within the cache using either 

the ProcessID [26] or the DomainID [4], so that both the victim and 

the attacker can get their own copy of the shared line, and evicting the 

attacker line would not dislodge the victim line. CEASER-S is fully 

compatible with such a solution. For example, accessing CEASER-S 

using a combination of the ProcessID/DomainID and the physical 

line address (as done in prior works) can avoid Flush-based attacks 

by automatically creating duplicates of shared lines. 

 

9 CONCLUSION 

Randomizing the line-to-cache mapping is an effective way of mit- 

igating conflict-based cache attacks. Our recent work, CEASER, 

makes randomized caching practical by accessing the cache with an 

encrypted line address and using periodic remapping of cache con- 

tents. The efficacy of a randomized cache is dictated by how quickly 

the attacker is able to form eviction sets. In this work, we provides 

two new attacks that significantly push the state-of-the-art in forming 

evictions set, namely (1) We develop a faster search algorithm that 

can quickly converge on an eviction set, given a large number of 

random lines that cause a conflict in one of the cache set, (2) We 

develop an attack that exploits the cache replacement policy to form 

eviction sets at a rate that is orders of magnitude faster than currently 

known attacks. To mitigate these faster attacks, the Remap-Rate of 

CEASER must be increased beyond the practical limits. 

To enable cache randomization, while incurring negligible remap- 

ping overheads, we propose Skewed-CEASER (CEASER-S), a design 

that divides the cache ways into multiple partitions and allows the 

line to be mapped to a different set in each partition. Such a de- 

sign makes it harder for the adversary to form an eviction set as 

the line could be in multiple possible locations, and the conflicting 

lines are not guaranteed to map to the same partition as the target 

line. Our analysis shows that CEASER-S provides strong security 

(tolerates several years of attack), has low performance overhead 

(within 1%), requires a storage overhead of less than 100 bytes for 

the added structures, and does not need any OS support. The robust- 

ness of CEASER-S can be further increased by either increasing the 

Remap-Rate, or the number of partitions, or both. 

While we analyzed our solution only for shared LLC, it is also 

applicable to other structures, such as the coherence directory [27] 

that may be vulnerable to conflict-based attacks. As cache attacks 

become common [28] [29] [30] [31], it has become vital to develop 

practical and effective solutions for protecting cache structures. 

 

DEDICATION 

This paper is dedicated to the memory of Prof. Sudhakar Yalaman- 

chili. Sudha was a true mentor who helped me grow as a young 

faculty member at Georgia Tech. He was always available, always 

willing to listen, always willing to share that elderly advise, always 

trying to form bridges between groups. We will miss you Sudha. 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

207 

 

ACKNOWLEDGEMENTS 

Special thanks to Andre Seznec for discussion and feedback. We 

thank Olivier Roeder for posting the "spy problem" [15] on fivethir- 

tyeight.com. We thank Sung Ha Kang, Greg Bleckherman, Hye- 

soon Kim, Swati Gupta, Tushar Krishna, Vinson Young, and Sanjay 

Kariyappa for solutions and/or discussions of the spy problem. We 

also thank Gururaj Saileshwar and Prashant Nair for discussions. 

REFERENCES 
[1] D. J. Bernstein, “Cache-timing attacks on AES,” tech. rep., 2005. 

[2] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based 

side channel attacks,” in 34th Annual International Symposium on Computer 

Architecture (ISCA), 2007. 

[3] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev, “Non- 

monopolizable caches: Low-complexity mitigation of cache side channel attacks,” 

ACM Trans. Archit. Code Optim., vol. 8, Jan. 2012. 

[4] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer, “DAWG: A 

Defense Against Cache Timing Attacks in Speculative Execution Processors,” in 

51st Annual IEEE/ACM International Symposium on Microarchitecture, Oct 2018. 

[5] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced performance 

and security,” in 41st Annual IEEE/ACM International Symposium on Microarchi- 

tecture (MICRO), pp. 83–93, 2008. 

[6] M. Qureshi, “CEASER: Mitigating Conflit-Based Cache Attacks via Encrypted- 

Address and Remapping,” in 51st Annual IEEE/ACM International Symposium on 

Microarchitecture, Oct 2018. 

[7] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel 

attacks are practical,” in 2015 IEEE Symposium on Security and Privacy, pp. 605– 

622, May 2015. 

[8] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High performance cache 

replacement using re-reference interval prediction (rrip),” in Proceedings of the 

37th Annual International Symposium on Computer Architecture, ISCA ’10, (New 

York, NY, USA), pp. 60–71, ACM, 2010. 

[9] A. Seznec, “A case for two-way skewed-associative caches,” in Annual Interna- 

tional Symposium on Computer Architecture (ISCA), 1993. 

[10] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed compressed caches,” in Annual 

IEEE/ACM International Symposium on Microarchitecture, 2014. 

[11] E. Quiñones, E. D. Berger, G. Bernat, and F. J. Cazorla, “Using randomized caches  

in probabilistic real-time systems,” in 21st Euromicro Conference on Real-Time 

Systems, ECRTS 2009, Dublin, Ireland, 2009. 

[12] V. Young, C. Chou, A. Jaleel, and M. Qureshi, “Accord: Enabling associativity 

for gigascale dram caches by coordinating way-install and way-prediction,” in 

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture 

(ISCA), pp. 328–339, 2018. 

[13] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: The  

case of aes,” in The Cryptographers’ Track at the RSA Conference on Topics in 

Cryptology, 2006. 

[14] C. Percival, “Cache missing for fun and profit,” in The Technical BSD Conference, 

2005. 

 
[15] How Much Will It Cost To Sniff Out The Spies? (Riddler Nation at FiveThir- 

tyEight.com on Oct 5, 2018). https://fivethirtyeight.com/features/how-much-will- 

it-cost-to-sniff-out-the-spies/. 

[16] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion  

policies for high performance caching,” in Proceedings of the 34th Annual Inter- 

national Symposium on Computer Architecture, ISCA ’07, (New York, NY, USA), 

pp. 381–391, ACM, 2007. 

[17] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, Jr., and J. Emer,  

“Ship: Signature-based hit predictor for high performance caching,” in Proceedings 

of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, 

MICRO-44, (New York, NY, USA), pp. 430–441, ACM, 2011. 

[18] V. Young, C.-C. Chou, A. Jaleel, and M. Qureshi, “Ship++: Enhancing signature- 

based hit predictor for improved cache performance,” in The 2nd Cache Replace- 

ment Championship (CRC-2 Workshop in ISCA 2017), 2017. 

[19] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block prediction for 

last-level caches,” in 2010 43rd Annual IEEE/ACM International Symposium on 

Microarchitecture, 2010. 

[20] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm for im- 

proved cache replacement,” in 2016 ACM/IEEE 43rd Annual International Sym- 

posium on Computer Architecture (ISCA), 2016. 

[21] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark suite,” CoRR, 

vol. abs/1508.03619, 2015. 

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically character- 

izing large scale program behavior,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 45–57, 

Oct. 2002. 

[23] P. Vila, B. Kopf, and J. F. Morales, “Theory and practice of finding eviction sets,” 

in 2019 2019 IEEE Symposium on Security and Privacy (SP), pp. 695–710, may 

2019. 

[24] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee, “CATalyst: 

Defeating last-level cache side channel attacks in cloud computing,” in IEEE 

International Symposium on High Performance Computer Architecture (HPCA), 

2016. 

[25] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-level pro- 

tection against cache-based side channel attacks in the cloud,” in 21st USENIX 

Security Symposium, 2012. 

[26] Z. He and R. B. Lee, “How secure is your cache against side-channel attacks?,” in 

Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar- 

chitecture, pp. 341–353, ACM, 2017. 

[27] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas, 

“Attack directories, not caches: Side channel attacks in a non-inclusive world,” in 

IEEE Symposium on Security and Privacy (S&P), 2019. 

[28] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, 

T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative 

execution,” ArXiv e-prints, Jan. 2018. 

[29] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, 

D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” ArXiv e-prints, Jan. 2018. 

[30] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silber- 

stein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys 

to the intel sgx kingdom with transient out-of-order execution,” in 27th USENIX 

Security Symposium USENIX Security 18), USENIX Association, 2018. 

[31] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas, 

“Invisispec: Making speculative execution invisible in the cache hierarchy,” in 51st 

Annual IEEE/ACM International Symposium on Microarchitecture, Oct 2018. 


