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ABSTRACT 
Like Intel's Nehalem CPU and AMD's Barcelona processor, chip-

multiprocessor (CMP) architectures use multi-level cache 

hierarchies with private L2 caches per core and a common L3 

cache. The inclusion policy—inclusive, non-inclusive, or 

exclusive—is one of the important design options when creating a 

multi-level cache hierarchy. There are advantages and 

disadvantages to both options. An inclusive cache hierarchy, such 

as the L3 in Nehalem, has the advantage of allowing incoming 

snoops to be filtered at the L3 cache, but it also suffers from (a) 

decreased space efficiency due to replication between the L2 and 

L3 caches and (b) decreased flexibility because it cannot bypass 

the L3 cache for transient or low priority data. Because the 

inclusion can begin to impair performance, it also becomes 

challenging to flexibly reduce L3 cache size (or raise L2 cache 

size) for various product instantiations in an inclusive L2/L3 

cache hierarchy (due to significant back-invalidates). In this 

research, we propose an unique method to address the 

shortcomings of inclusive caches while preserving the advantages 

of snoop filtering. In this article, we introduce NCID, a non-

inclusive cache, inclusive directory architecture that keeps tag 

inclusion in the directory to provide full snoop filtering while 

allowing data in the L3 to be non-inclusive or exclusive. 

Afterwards, we go over a variety of NCID-based architecture 

solutions and policies and evaluate them. Our analysis 

demonstrates that NCID allows for an adaptable and effective 

cache hierarchy for future CMP systems and has the potential to 

considerably enhance performance for a number of critical server 

benchmarks. 

Categories and Subject Descriptors 
B.3.2 [Hardware]: Design Styles of Memory Structures – cache 

memories. 

General Terms: Performance, Design, Experimentation 

Keywords: Directory, Cache 

 

1. INTRODUCTION 
In this chip-multiprocessor (CMP) era, it becomes more and more 

important for architects to design efficient cache hierarchies so that 

data access latency within the cache hierarchy as low as possible. 

To support larger cache sizes with minimized access latency, the 

off-chip memory accesses can be minimized while still keeping 
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current CMP cache hierarchy in mainstream processors is 

moving from a two-level hierarchy to a three level cache 

hierarchy like Intel’s quad-core processor (Nehalem [8]) and 

AMD’s quad-core processor (Barcelona [24]). We believe that 

future larger scale chip-multiprocessor architectures will also 

use three level cache hierarchies for scalability and 

performance. 

One of the important aspects of building efficient cache 

hierarchies is the consideration of the inclusion policy between 

cache levels. Each level in a cache hierarchy can be inclusive, 

non-inclusive or exclusive. Intel’s L3 cache (in Nehalem), is 

8MB in size, and is inclusive of its four 256K L2 caches [8]. On 

the other hand, AMD’s Barcelona [24] employs semi-exclusive 

cache hierarchies with 512K L2 cache per core and a 2MB 

shared L3 cache across four cores. One advantage of inclusive 

cache is its snoop filtering capability, i.e., external snoops from 

another sockets or chipset do not require L2 lookup if a miss 

occurs in L3. However since L3 is inclusive of L2, data is 

duplicated in both L2 and L3, which reduces the cache space 

efficiency. On the other hand, exclusive caches have better 

space efficiency but do not have snoop filtering capability. Since 

both inclusive and exclusive caches have their pros and cons, 

this paper focuses on defining an alternative cache hierarchy 

solution that allows both flexibility and efficiency in terms of 

space allocation and snoop filtering. 
 

(a) 

 
L2 

 

 

L3 

(b) 

Figure 1. A 3-Level CMP Cache Hierarchy: (a) Basic 

Architecture, (b) L2/L3 inclusion policy 

Figure 1(a) shows a typical CMP architecture with several 

cores, each with a private L1 and a private L2 cache. A shared 

L3 cache can be monolithic or can be implemented as a non-

uniform cache 
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access (NUCA) organization [12]. In a NUCA organization, the L3 

is distributed across an interconnect and the access latency to an L3 

bank is dependent on its distance from the requesting core. In such 

an architecture, the latency to a small L2 cache is usually less than 

ten clock cycles, whereas access to the L3 cache can be several tens 

of clocks depending on the interconnect design. Figure 1(b) 

illustrates the organization of the L3 cache and inclusion policy 

with respect to the L2 caches (L2s). Each cache line in the L3 cache 

contains the following key components (as illustrated in Fig 1b): 

(1) the tag containing the higher order bits of the address, the state 

information and the replacement bits, (2) the directory or core valid 

bits indicating the potential presence of the cache line in the core’s 

private L1/L2 caches and (3) the 64 byte data for the cache line 

In an inclusive cache hierarchy, the L3 cache is enforced to be 

inclusive of the L2 caches. As a result, every line in the L2 cache 

can also be found in the L3 caches. When a cache line is evicted 

from the L3 cache, a back-invalidate is generated to the appropriate 

L2 caches (based on the core valid bits) and correspondent cache 

lines are invalidated from the L2 caches before eviction from the 

L3 cache. The use of an inclusive L2/L3 cache has the benefits of 

complete snoop filtering, but also has the following limitations: 

(a) Replication of data between the L2 and L3 cache reduces the 

overall space efficiency. For example, a 256K L2 and a 2MB L3 

bank can have a replication of up to ~12.5%. 

(b) Inflexibility to bypass the L3 cache for transient or low 

priority data. Research work on adaptive fill policies [17] has 

recently shown that workloads possess significant amounts of 

transient data and avoiding allocation of the data in the L3 cache 

can improve the miss rate significantly. Recent work on quality of 

service (QoS) [9][10] has also shown that it is desirable to allow 

very low priority data to bypass the L3 cache. However, bypassing 

the L3 cache cannot be allowed in an inclusive hierarchy, thereby 

requiring a minimum occupancy in L3 cache even for low priority 

or transient data. 

(c) Inflexibility in terms of reducing L3 cache or increasing L2 

caches. In an inclusive cache hierarchy, it is important to maintain 

a size ratio of L3 cache to L2 cache of about 8:1. As a result, 

increasing the L2 cache requires increasing the L3 cache 

appropriately as well. However, with significant die budget 

constraints, it is desirable to enable a cache hierarchy where L2 

caches can be significantly larger and L3 caches are smaller in size. 

In such scenarios, (semi-)exclusive hierarchies are much more 

appropriate. 

(d) A distributed shared L3 cache generally employs hashing 

techniques to ensure that data access across the banks is uniform 

(i.e. no particular bank becomes a hotspot due to the access 

pattern). However, in such a configuration, private and shared data 

accesses for any core incur the same average bank access latency. 

If private data can be placed closer to the cores and shared data can 

be placed in a central location, it is possible to improve access 

latency significantly and thereby improve performance. 

To solve the above limitations, we propose a novel cache hierarchy 

approach called NCID -- Non-inclusive Cache, Inclusive 

Directory. NCID enables data to be non-inclusive or semi-

exclusive or exclusive while maintaining tag inclusion to still keep 

the snoop filtering capability. The contributions of this paper are 

the following: 

 We propose a new multi-level NCID cache hierarchy that 

enables flexibility and cache space efficiency, and describe its 

detailed hardware implementation. 

 We demonstrate that NCID can reduce on-die interconnect 

traffic significantly while still maintaining the performance 

benefits of non-inclusive caches. 

 We propose a selective allocation scheme based on NCID 

support to optimize workloads that have a significant amount 

of transient data. 

 We show that using NCID, exclusive cache hierarchies can be 

used while still maintaining the snoop filtering capability. 

 We also show that NCID can support flexible data placement 

in a distributed shared L3 cache by building a hybrid L2-L3 

cache organization. 

The rest of this paper is organized as follows. Section 2 describes 

our proposed NCID architecture and discusses the implementation 

considerations for NCID architectures. Section 3 outlines a range 

of potential NCID architecture and policy options. In Section 3, we 

also describe the methodology used to evaluate NCID options. 

Section 4 presents the results from our detailed simulations and 

analyzes performance implications of NCID architectures. Section 

5 covers a comparison to related work. Section 6 summarizes our 

key contributions and presents a direction for future work in this 

area. 

 

2. NCID ARCHITECTURE 
In this section, we describe our proposed NCID architecture and 

compare/contrast it with previous hierarchies. We will also discuss 

the NCID implementation options along with associated hardware 

cost. 

 NCID Basics 
Figures 2(a) – (c) summarize the cache hierarchy choices and the 

pros/cons for each. As shown in the figure, the inclusive cache 

hierarchy provides the benefits of complete snoop filtering, but 

requires full data replication supported by back-invalidate 

messages. Since most incoming snoops will miss in the L3, it is 

guaranteed that the L2 caches do not need to be snooped since the 

L3 is inclusive. The non-inclusive cache hierarchy is desirable 

because it reduces the need for replication. In this hierarchy, 

evictions from the L3 do not require back-invalidations to be sent 

to the L2 caches. However, at the same time, it has the drawback of 

requiring incoming snoops that miss in the L3 to be sent to all of the 

L2 caches since it is not guaranteed that they will not be in the L3. 

The figure also illustrates the exclusive cache hierarchy, where the 

space usage is maximized by ensuring that any data in the L2 is not 

replicated in the L3 and vice-versa. It should be noted that there are 

a plethora of hybrid policies that are possible between inclusive 

caches and exclusive caches which are referred to as semi-inclusive 

or semi-exclusive caches. 

Figure 2(d) illustrates the proposed NCID architecture. The key 

objective of NCID is to decouple tag and data management in a 

multi-level cache design. The L3 data is not required to be 

inclusive while L3 tags are inclusive of all L2 tags. This is 

accomplished by maintaining a larger number of tags than data 

entries in the L3 cache. As shown in Figure 3, the number of tag 

and directory array entries is larger than that of the data array, thus 

some lines in L2 have their duplicated tags in L3 but no data is 

required to exist in L3. In this paper, we call the extended tags in 

the directory array as directory cache and the traditional cache 

array as L3 cache. Since the space required for tags/directory is 
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much smaller than the space required for data, this is a cost-

effective approach to maintain tag inclusion for snoop filtering 

but relax data inclusion and allow either non-inclusive data 

allocation or exclusive data allocation. To demonstrate that NCID 

allows the L3 cache to be highly flexible, let us now review one 

possible flow to understand the NCID-based hierarchy in a more 

detailed fashion. 

 
 

(a) Directory cache as a separate structure: In this approach, 

as shown in Figure 3 (a), we design an independent associative 

tag/directory structure to maintain additional addresses with no 

associated data. This extended tag/directory structure is exclusive 

with respect to the main tag/directory. It can have a different 

indexing. Migration of addresses occurs between these structures 

when the main tag/directory structure evicts an entry (which is 

moved to extended directory) or when data for an address in the 

extended tag/directory structure is requested by a core and it does 

with the key requirement still being maintaining tag inclusion with 

respect to the L2 caches. 

(b) Directory cache as additional ways in the main tag 

structure: In this approach, we can design the directory cache 

entries as just additional ways in each set of the main tag structure. 

In doing so, it should be noted that some ways are associated with 

data and some are data-less. Differentiating these two different 

(a) Inclusive 
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subsets of ways can be achieved in a static scheme or in a dynamic 

scheme. For a static scheme as shown in Figure 3 (b), specific ways 

are predetermined to be data-less. For a dynamic scheme as shown 

in Figure 3 (c), any given way can be data-less as required at 

runtime. This requires additional bits to be maintained to associate 

the data with the ways. Overall, this approach of increasing ways in 

each set avoids the complexity of maintaining an additional 

directory structure. However, both the approaches can achieve the 
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Figure 2. NCID Architecture Overview 

 
• Upon a memory access that misses in all levels of cache, the 

returning data is always provided to the L2 and can be allocated in 

the L3 cache in one of the following ways: (a) the missing address 

and core valid bits are installed in the main tag/directory and the 

data is also stored in the data arrays or (b) the missing address and 

core valid bits are installed in the extended tag/directory and the 

data is not stored in the data arrays. The policy for deciding 

Request 

 

 

 
 

Tag 
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between these two options is kept flexible and will depend on 

whether inclusive, non-inclusive or exclusive policies are desired. 

• Upon an eviction from the L3 cache, the eviction can result in 

the following different cases: (a) the address being evicted from the 

L3 cache also has data associated with it in the data arrays. In this 

case, it is possible to evict the data and retain the address in the 

directory cache. (b) the address being evicted from the L3 cache 

Tag/CV Data 

 

 

 
Normal tag 

Tag 

Tag/CV Data 

does not have data associated with it. In this case, back-invalidates 

are generated to the L2 cache (based on the core valid bits in the Data-less tag 
migration 

directory). Once the L2 caches have evicted the data, the address 

eviction is completed at the L3 cache. 

• Upon an incoming snoop either from another socket or a lookup 

from another core, the L3 and the directory cache is consulted to 

find the location of the line in one or more L2 caches. If the line 

does not exist, then the request is sent to memory. If the line exists 

(but no data exists in the L3 cache), the request is forwarded to a L2 

cache(s) that may have a cached copy. 

 Hardware Implementation 
NCID-based architectures can be implemented in one of two ways: 

(b) Static scheme (c) Dynamic scheme 

Figure 3. Implementation Options for NCID Directory Cache 
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function of the coverage it provides. We define coverage to be the 

data array size that a tag array corresponds to. For example, 1MB 

cache size needs about 80KB for its tag array, so we say that 80KB 

of directory cache can provide a coverage of 1MB. Based on our 

estimation, (assuming 64 bits of the physical memory address, 64B 
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of cache line size, 8 bits for core valid bits, 2 bits for states), Figure 

3 shows the size (in Kbytes) of the directory cache (per L3 cache 

bank) as a function of coverage and L2 size. The x-axis shows the 

L2 cache size and bars denote the coverage. The coverage of an 

inclusive directory cache is generally required to be greater than 

2X in order to ensure limited number of back-invalidates and 

negligible impact on miss rate [1]. However, if replacement hints 

are implemented, then the size of the directory cache can be 

reduced down to 1X as well. We can see that to cover 256K L2 

cache, a directory cache with 2X of coverage requires about 40KB. 

Compared to a baseline L3 bank size of about 2M, this adds only 

2% overhead. 
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Figure 4. Directory Size (main + extended) as a function of 

cache size and coverage 

 

3. NCID ARCHITECTURE OPTIONS AND 

 

(4) NCID to support large L2, Smaller L3 configurations with 

non-inclusive and exclusive hierarchies: Here, the L2 sizes are 

increased from 256K to 2M (doubling along the way) and the L3 

sizes are correspondingly reduced from 3M to 1M in order to the 

keep the total die budget constant. 

(5) NCID to support hybrid L3 configurations to improve 

proximity to private data in the distributed shared L3: Here we 

study the use of NCID to partition the L3 into a private and shared 

area and allow private data to be cached closer to the core to reduce 

latency. 

We use a trace-driven platform simulator called ManySim [26] to 

evaluate NCID options in CMP platforms. ManySim simulates the 

platform resources with high accuracy, while abstracting the core 

to optimize for speed. ManySim contains a detailed cache 

hierarchy model, a detailed coherence protocol implementation, an 

on-die interconnect model (simulating a bi-directional ring) and a 

memory model that simulates the maximum sustainable bandwidth 

specified in the configuration. In order to evaluate NCID options, 

ManySim was modified to add the control for directory cache and 

required protocol changes as well as various policies supported. 

The simulated CMP architecture is similar to the one shown in 

Figure 1. There are eight cores, with private L1 and L2 caches. All 

cores share a distributed L3 cache consisting of 8 banks. Table 1 

summarizes the simulation configurations. 

EVALUATION METHODOLOGY 
To show the effectiveness of NCID architectures, we evaluated 

several NCID architecture options and policies. The NCID 

architecture options can be placed into the following three broad 

categories: (a) small L2, large L3 options, (b) larger L2, smaller L3 

options and (c) hybrid L3 options. The first category (where 

inclusive or non-inclusive policies are more applicable) evaluates 

the utility of adding NCID functionality into a cache hierarchy 

where the L2 size is small whereas each L3 bank size is much 
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larger. The second category (where exclusive policies are more 

applicable) evaluates the benefits of NCID when the L2 cache is 

increased significantly and the L3 is correspondingly reduced to 

maintain a constant die budget. The last category evaluates the 

benefits of NCID to support flexible data placement in a distributed 

shared L3 caches. All these options are compared against the base 

inclusive cache hierarchy. As shown in Figure 5, we enumerate the 

configurations being evaluated as follows (note that L3 in the 

figure means L3 data only, and DIR means directory cache plus L3 
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data: use probability to allocate some of the lines to the L3 cache 

and some of the lines to the directory cache. 
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(3) NCID to support QoS policy: Here, we show how the NCID 

architecture allows low priority data to bypass L3 cache and 

therefore improve cache efficiency as well as provide QoS. 

Figure 5. NCID configurations under Evaluation 
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Table 1. Simulation configurations Figure 6 (b) shows the corresponding miss rate reduction, which 

matches the data for speedup. Figure 6 (c) shows the number of 

snoop invalidation reduced by NCID. We can see that even in 

256K_3M configuration where NCID performs the same as the 

base inclusive cache, the number of snoop invalidations is reduced 

significantly. Although this will not affect performance as the 

simulated interconnect model has enough bandwidth, this has the 

potential to reduce the power consumption on interconnect, 

especially if a network-on-chip is employed for future CMP 

platforms. 
 

1.1 
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We use several commercial benchmark traces which include TPC-

C [22], TPC-E [23], SPECjbb2005 [20], SAP SD/2T [18]. 

Each trace is a long bus trace collected on Intel Xeon MP platform 

with 8 hardware threads running simultaneously with the L2 cache 

disabled. The traces include both instruction and data accesses, 

synchronization and inter-thread dependencies. 

 

4. RESULTS AND ANALYSIS 
In this section, we present an in-depth evaluation of the 

performance impact of NCID configurations. As we use various 

L2/L3 cache size configurations, we use ―X_Y‖, where X is the L2 

cache size per core and Y is the L3 cache size per core (note that 

although the L3 is shared, the L3 size specified is averaged by the 

number of cores). For example, 256K_2M means 256K L2 and 2M 

L3 per core (or 16M L3 cache in total because there are 8 cores in 

the configuration). We will show the performance speedup of using 

NCID architecture compared to the base inclusive cache hierarchy. 

 NCID Benefits for Non-inclusive 

Hierarchies 
Figure 6 compares the base NCID hierarchy with non-inclusive 

data to the base inclusive cache configuration. The directory cache 

coverage is maintained at 2X the total size of L2 caches in the 

configuration. We choose 3 configurations: (a) 256K_2M, (b) 

512K_2M, and (c) 1M_2M, where we fix the total L3 cache size as 

16MB while increasing the L2 cache size. 

 

 

 

 
1.02 

1 

0.98 

0.96 

0.94 

0.92 

0.9 

0.88 

0.86 

0.84 

0.82 

0.8 

 
 
 
 
 

 
0.9 

0.8 

0.7 
 

0.6 

0.5 

0.4 

0.3 
 

0.2 

0.1 

0 

 
(a) NCID Speedup 

 

 

 

 

 

 

 

 

 

 
(b) NCID L3 Miss Rate Reduction 

 

 

 

 

 

 

 

 

 

 

(c) NCID Reduction in Snoop Invalidations 

Figure 6 (a) shows the speedup of using NCID over the base 

inclusive cache. As shown in the figure, the NCID configuration 

provides equal or better performance as compared to the base 

inclusive hierarchy. When the size ratio between L2 and L3 is high 

(256K_3M bars), NCID does not provide additional benefit 

because inclusion does not have a significant drawback. However, 

as larger L2s are considered for latency reduction, the size ratio 

between L2 and L3 is bound to shrink. In this case, the NCID 

architecture provides a better speedup. In the last configuration 

where 1M_2M is used, the speedup is up to 9%. 

Figure 6. NCID Benefits (compared to inclusive cache 

hierarchy) 

 NCID Benefit for Transient Data 

Optimizations 
Previous research has shown that there exists a significant amount 

of transient data in many workloads. For example, Qureshi et al 

[17] proposed an adaptive fill policy to improve the cache 

efficiency and performance. 
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Parameters Values 

Core 2GHz 

L1 I/D cache 
32 Kbytes, 4-way, 64-byte 

block 

L2 cache 8-way, 64-byte block 

 
L2 cache access time 

10, 11, 12 and 13 cycles for 

256K, 512K, 1M, and 2M 

respectively 

L3 cache 
Varied (e.g. 1MB banks, 

16-way, 64-byte) 

L3 cache access time 
28, 29, 30 cycles for 8M, 16M, 

24M respectively 

Interconnect bandwidth 128GB/s 

Memory access time 400 cycles 

Memory bandwidth 16GB/s 
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L3 DIR 

Class A 100% 

Class B 60% 

Class C 40% 

Class D 10% 

 
L3 

Allocation upon 

Cache Miss 

 
DIR 

The adaptive fill policy introduces bi-modal fills, where 5% of the 

lines are filled normally as Most Recent Used (MRU) lines, and 

95% of the lines are filled vulnerably as Least Recent Use (LRU) 

lines. They showed that employing set dueling with some leader 

sets to choose normal fill and valuable fill dynamically in the run 

time can allow cache performance to improve significantly. They 

have also shown that this works better in a non-inclusive cache 

than in an inclusive cache hierarchy because the vulnerable lines 

can cause significant back-invalidations if the cache hierarchy is 

inclusive. With NCID architecture, we evaluate a variant of bi-

modal fill policy (similar to selective allocation policy [9]), where 

we allocate 5% of the allocations normally as MRU in L3 cache 

and the remaining 95% vulnerably in the directory cache (which is 

data-less). 

We compare the base inclusive cache without transient data 

optimizations to (a) inclusive cache with bi-modal fills and (b) 

NCID cache with selection allocation. The configuration chosen 

for this study is a 256K_1M configuration. Figure 7 shows the 

speedup and miss rate reduction compared to the base inclusive 

cache. The NCID approach the best performance for three of the 

four workloads. Especially for SJBB, the performance is increased 

by 45% (it should be noted that we validated this by characterizing 

the SPECjbb cache usage patterns independently using a cache 

simulator as well). For the SAP workload, we find that all three 

approaches result in equal performance (because the set sampling 
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approach ensures that the cache always runs with the normal fill 

policy instead of the selective or bi-model fill policy). 

 

 Using NCID to Improve QoS 
Previous researchers have proposed QoS mechanisms in cache 

[9][10] to address contention for shared resources between 

multiple applications of differing priority running simultaneously 

Figure 7. Benefits of NCID with Selective Allocation (256K_1M 

configuration) 

 

on a platform. Cache QoS allows for the OS/VMM to assign 

classes of service to applications or virtual machines. Each class of 
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on one core that has 256K private L2, the minimum L3 cache space 
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cache, i.e., L2 is enough, and bypassing L3 can provide more space 

to other high priority applications. With the NCID architecture, L3 

bypass is easy to achieve and this allows us to enhance the QoS 

support in cache. 

Here we show an example of employing probabilistic selective 

allocation per class of service in L3 cache to provide cache QoS 

enabled by NCID architecture. As shown in Figure 8(a), each class 

of service is assigned X% probability. When a new line is filled 

into L3 cache, a random number is generated. If this number is less 
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than X%, it is allocated in L3 cache; otherwise it is allocated into 

the directory cache. For class D in the example (0% probability), it 

implies that all allocations for this class should bypass the L3 

cache. Figure 8(b) shows the implications of employing different 

allocation probabilities for SPECjbb as a low priority workload 

running simultaneously with TPCC as a high priority application in 

256K_2M configuration. 
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TPCC is always assigned 100% allocation probability, whereas the 

probability for SPECjbb is varied from 100% down to 0%. The 

bars show the L3 occupancy for these two applications. Note that 

30% probability does not equal to 30% of cache occupancy. 

improve significantly. As the overall performance is a function of 

both access latency and the miss rate, 1.5M_1.5M becomes a sweet 

point for these workloads. 

Instead we see that SPECjbb still gets about 50% of the L3 cache. 

The lines show the speedup or degradation. We can see that when 

L3 bypass is employed, TPCC takes the whole L3 cache, and it 

achieves about 16% speedup. For SPECjbb on the other hand, its 

performance is degraded significantly. If the low priority workload 

is streaming in nature and does not use the L3 cache as much, we 

expect that its performance will maintain the same. This 

architecture will be more desirable in a heterogeneous CMP 

architecture, which has general-purpose cores and programmable 

hardware engines (like a GPU for graphics processing), because 

CPU workloads are generally more cache-friendly, and the 

graphics engines are streaming in nature and generally do not 
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 Using NCID to Support Exclusive Data 

Figure 9. Hit and miss distribution of using NCID to support 

exclusive data 

Hierarchies 
Some CMP architectures (e.g. AMD Barcelona) find it desirable 

for the cache hierarchy to contain larger L2s and proportionately 

smaller L3s. This is likely because larger L2s may reduce the stall 

time in the cache hierarchy and smaller L3s are required to ensure 

that the cache die budget remains constant for cost purposes. For 

example, instead of a 256K L2 and a 3M L3 bank, a cache 

hierarchy could consist of 1M L2s and 2M L3 banks. In such 

scenarios it is important to avoid inclusion in the cache hierarchy 

since it affects the miss rate significantly (as a result of replication 

and back-invalidates). With the NCID architecture, we can support 
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exclusive cache hierarchies and complete snoop filtering. In an 

exclusive cache hierarchy, it is sufficient to provide 1x directory 

coverage in NCID because victims from L2 are sent to the L3. 

For the sake of comparison, we choose 4 configurations: 256K_3M 

as the base inclusive cache configuration, 1M_2M, 1.5M_1.5M 

and 2M_1M as the configuration with exclusive data and inclusive 

tag. These configurations are chosen to make the total size of L2 

and L3 roughly the same. Figure 9 shows the hit/miss distribution 

for four server workloads. In this evaluation, we also added a 

―MIX‖ workload to simulate a server consolidation by running all 

four workloads simultaneously with each one running on two 

cores. We breakdown the total access to four parts: L2 hit (hits to 

local private L2), L2 remote hit (hits to other private L2), L3 hit 

(hits to L3), and miss to memory (the misses to the memory). We 

can see that the percentage of L2 hit is increased significantly as 

the L2 size is increased. For example, SPECjbb2005 has only 40% 

of its accesses hit in the L2 in the base inclusive hierarchy, but has 

close to 70% of its accesses hit in the L2 in the case where the L2 

size is 1M and the L3 size is 2M. 

Figure 10 shows the speedup of the 3 configurations compared to 

the base inclusive cache. We can see that the performance is 

increased by up to 7.5%. It is observed that SPECJBB and MIX 

favor 2M_1M configuration, whereas the other three workloads 

favors 1.5M_1.5M configuration. This is because both SPECJBB 

and MIX have little sharing and increasing L2 cache size reduces 

the access latency significantly. However, for the other three 

workloads, there is significant sharing in the workload. Increasing 

the L2 cache size ends up as replicating contents across multiple 

L2s. In doing so, the overall cache space is affected negatively as 

compared to the base case. We find that the L2 miss rate increases 

for these workloads and therefore the performance does not 

Figure 10. Speedup of using NCID to support exclusive data 
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Figure 11. Speedup of limiting the shared data in L2 to be 20% 
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the shared data is replaced. Figure 11 shows the benefits of limiting 

shared data to 20% of the L2 cache size. We can see that by 

limiting the shared data occupancy, the performance is increased 

by up to 12%. 
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partitions using way partitioning [9]: (a) private partition and (b) 

shared partition. While there are a lot of schemes that can be 

implemented on a hybrid cache, this paper evaluates one scheme to 

show the flexibility of the NCID architecture. The hybrid NCID 

scheme works as follows: when a core misses the L2/L3 and 

request a line from the memory, the data for that line is allocated 

into the private partition of the L3 bank nearest to the core. The 

address of the cache line is also allocated in the NCID directory in 

order to keep track of the copies in the private L3 partitions. When 

the line is evicted from this private partition, it is migrated to the 

shared partition of a L3 bank that is determined by the static 

address hashing mechanism. In addition, when a line becomes 

shared, it is also migrated to the shared partition. The migration is 

not on the critical path, so the performance is not affected. 
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Figure 12. Benefits of using NCID for a hybrid L3 

Figure 12 shows the data for hybrid L3s made possible by NCID 

and compares it to the base shared cache. The base configuration is 

256K_3M for shared cache. For hybrid cache, we essentially use 

16 ways out of the 24 ways in a 3M L3 bank for the private 

partition (i.e. 2M private partitions) and 8 ways out of the 24 ways 

in a 3M L3 bank for the shared partition (1M shared partitions). 

Employing the hybrid cache has two implications: (a) the average 

access latency is affected due to local hit (a line is found in the 

local bank) and remote hit (a line is found in a remote bank), and 

(b) the overall miss rate to memory. Figure 12 (a) shows that 

hit/miss distribution for all the four workloads and the consolidated 

workload. We can see that for workloads with little sharing like 

SPECjbb2005 and Mix, the local hit is increased significantly. For 

example, the local bank hits increase from 12.5% in the shared case 

to about 70% for the hybrid case. For workloads with sharing, the 

improvement is moderate (e.g. from 12.5% in shared cache to 33% 

in hybrid cache for TPC-C). Similar to the previous subsection the 

performance is a function of both access latency and miss rate. So 

Figure 12 (b) illustrates the speedup compared to the base shared 

case. It is observed that both workloads that have a lot of sharing 

like TPCC and TPCE get degradation about less than 1.3%, 

whereas other workloads get improvement of up to 5%. We believe 

that the improvement is relatively small in our configuration 

because of the small-scale nature of the CMP evaluated. With 

large-scale CMP architectures where the latency difference 

between private and shared banks is higher, the performance 

improvement is expected to be much more substantial. 

 

5. RELATED WORK 
Cache memories [19] have been studied over several decades now. 

The implications of the inclusion property in a multi-level cache 

hierarchy were first studied by Baer and Wang in [1]. Przybylski et 

al [16] subsequently studied performance-optimal design of multi-

level caches. Jouppi et al [11] studied the implications of two-

level on-chip caching with specific focus on exclusive hierarchies. 

Over the last two decades, microprocessors have been designed 

with inclusive caches (such as Intel’s latest Nehalem processor 

[8]) as well as exclusive caches (such as AMD’s Barcelona [24] 

processor). Both inclusion and exclusion has its pros and cons and 

the focus of this paper was on identifying a solution (NCID) that 

combines the benefits of these by decoupling data and tag 

management. The Piranha research prototype from Compaq [2], 

comes close to an NCID instance, by implementing a non-

inclusive shared L2 with copies of L1 tags for snoop filtering. 

In the context of CMP cache hierarchies, there have been several 

recent papers that look at policies for better management of data 

within a single level of cache as well as across the hierarchies 

[3][4][5][6][12][15][25]. Kim et al [12] introduce the concept of 

non-uniform cache architecture. In this paper, we adopt a 

distributed shared L3 cache that essentially follows the NUCA 

organization. We show how a non-inclusive cache with inclusive 

directories can be implemented in a NUCA L3. In addition, 

researchers have studied (full and selective) replication of victim 

data in neighboring caches to reduce the number of memory 

accesses. In addition, researchers have attempted to find 

mechanisms to manage private and shared data more effectively in 

order to improve cache efficiency. In this paper, we show how a 

hybrid private-shared cache can be implemented effectively using 

a NCID architecture. We show that the NCID architecture allows 

for flexible placement of private and shared data such that private 

data is placed in L3 banks closer to the core, whereas shared data is 

placed in a more central location. 

Researchers have also tried to improve the ability to handle 

transient data [17] and low priority data [9][10] in shared caches. In 

[17], Qureshi et al proposed the use of adaptive insertion policies to 

minimize the impact of transient data, whereas Iyer et al study the 

impact of restricting low priority data in cache to reduce its 

interference impact on the performance of higher priority 

applications [9][10]. In both cases, it is desirable to allow last-level 

cache bypass for low priority data. However, an inclusive cache 

hierarchy does not allow the ability to bypass the cache. In this 

paper, we revisited the handling of transient and low-priority data 

in the NCID architecture where the directory cache allows for an 

efficient bypass mechanism for data allocation while retaining a 

copy of the tag for snoop filtering. 

Overall, we believe that NCID introduces a novel approach to 

designing cache hierarchies by decoupling data and tag 

management. Although not related at all, this can be viewed as 

local hit remote hit miss 

shared hybrid shared hybrid shared hybrid shared hybrid shared hybrid 
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analogous to the decoupling of performance and correctness 

achieved by Token coherence [13]. 

 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we revisited the inclusion property of multi-level 

cache hierarchies (inclusive, non-inclusive and exclusive). Since 

these three inclusion policies are known to have benefits and 

drawbacks in terms of space efficiency and snoop filtering 

capability, we focused on identifying an alternative cache 

hierarchy approach that allows for flexibility in data placement and 

space efficiency, while retaining the ability to provide snoop 

filtering. We described our proposed architecture (NCID – non-

inclusive cache, inclusive directory) that addresses the above 

problem by decoupling data and tag management. We showed that 

this decoupled approach of NCID enables the following benefits: 

(a) it avoids data inclusion (enabling non-inclusive and exclusive 

data policies) in the cache hierarchy and (b) it maintains tag 

inclusion in the directory so that complete snoop filtering is still 

maintained. We described the implementation considerations for 

NCID and described how an extended directory can be achieved by 

either implementing a separate extended tag structure or extending 

the number of ways in each set of the main tag structure. 

We also described a range of NCID-based architecture options 

(base non-inclusive, selective allocation in NCID, QoS-aware 

NCID, exclusive NCID and hybrid private-shared L3 with NCID) 

that provide incremental to significant benefits (ranging from 2% 

to 45%) for future CMP processors. We showed that implementing 

a non-inclusive cache with transient data policies such as bi-modal 

fills or selective allocation improves performance by as much as 

45%. In addition, the NCID architecture allows low priority data to 

bypass the L3 cache for QoS. Then, we presented exclusive 

policies based on NCID that allowed for maximizing space 

efficiency in the cache hierarchy and minimizing data access 

latency through larger L2 caches. Last but not least, we presented 

flexible handling of private/shared data in the NCID architecture to 

improve cache efficiency (by limiting replication in the L2 caches) 

and provide better proximity to private data as compared to shared 

data per core. 

In summary, we believe that implementing an NCID-based 

architecture in future CMP platforms has significant value since it 

maximizes space efficiency and provides flexibility by decoupling 

snoop filtering (tag inclusion) from flexible data placement (data 

non-inclusion). Although we evaluated quite a few NCID policy 

options in this paper, we expect that there are additional policies 

related to victim caching, use of replacement hints, etc that can be 

exploited to optimize the NCID architecture significantly. We also 

believe that a decoupled tag structure can be further reduced in size 

by enabling coarse-grain structures. We also expect that 

application of NCID architectures to lower-level cache hierarchies 

(between L1 and L2 for instance) may be valuable. 
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