
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

158

NCID: A Powerful and flexible and Efficient Cache Topology

Architecture with Non-inclusive Cache and Encompassing Directory

Mr.Gyana Prakash Bhuyan

1
*, Ms. Smruti Mishra

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

gyanprakash@thenalanda.com*, smrutimishra@thenalanda.com

ABSTRACT
Like Intel's Nehalem CPU and AMD's Barcelona processor, chip-

multiprocessor (CMP) architectures use multi-level cache

hierarchies with private L2 caches per core and a common L3

cache. The inclusion policy—inclusive, non-inclusive, or

exclusive—is one of the important design options when creating a

multi-level cache hierarchy. There are advantages and

disadvantages to both options. An inclusive cache hierarchy, such

as the L3 in Nehalem, has the advantage of allowing incoming

snoops to be filtered at the L3 cache, but it also suffers from (a)

decreased space efficiency due to replication between the L2 and

L3 caches and (b) decreased flexibility because it cannot bypass

the L3 cache for transient or low priority data. Because the

inclusion can begin to impair performance, it also becomes

challenging to flexibly reduce L3 cache size (or raise L2 cache

size) for various product instantiations in an inclusive L2/L3

cache hierarchy (due to significant back-invalidates). In this

research, we propose an unique method to address the

shortcomings of inclusive caches while preserving the advantages

of snoop filtering. In this article, we introduce NCID, a non-

inclusive cache, inclusive directory architecture that keeps tag

inclusion in the directory to provide full snoop filtering while

allowing data in the L3 to be non-inclusive or exclusive.

Afterwards, we go over a variety of NCID-based architecture

solutions and policies and evaluate them. Our analysis

demonstrates that NCID allows for an adaptable and effective

cache hierarchy for future CMP systems and has the potential to

considerably enhance performance for a number of critical server

benchmarks.

Categories and Subject Descriptors
B.3.2 [Hardware]: Design Styles of Memory Structures – cache

memories.

General Terms: Performance, Design, Experimentation

Keywords: Directory, Cache

1. INTRODUCTION
In this chip-multiprocessor (CMP) era, it becomes more and more

important for architects to design efficient cache hierarchies so that

data access latency within the cache hierarchy as low as possible.

To support larger cache sizes with minimized access latency, the

off-chip memory accesses can be minimized while still keeping

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

mailto:smrutimishra@thenalanda.com

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

159

Interconnect

L3
L3

L3
L3

Core Core

Core Core

current CMP cache hierarchy in mainstream processors is

moving from a two-level hierarchy to a three level cache

hierarchy like Intel’s quad-core processor (Nehalem [8]) and

AMD’s quad-core processor (Barcelona [24]). We believe that

future larger scale chip-multiprocessor architectures will also

use three level cache hierarchies for scalability and

performance.

One of the important aspects of building efficient cache

hierarchies is the consideration of the inclusion policy between

cache levels. Each level in a cache hierarchy can be inclusive,

non-inclusive or exclusive. Intel’s L3 cache (in Nehalem), is

8MB in size, and is inclusive of its four 256K L2 caches [8]. On

the other hand, AMD’s Barcelona [24] employs semi-exclusive

cache hierarchies with 512K L2 cache per core and a 2MB

shared L3 cache across four cores. One advantage of inclusive

cache is its snoop filtering capability, i.e., external snoops from

another sockets or chipset do not require L2 lookup if a miss

occurs in L3. However since L3 is inclusive of L2, data is

duplicated in both L2 and L3, which reduces the cache space

efficiency. On the other hand, exclusive caches have better

space efficiency but do not have snoop filtering capability. Since

both inclusive and exclusive caches have their pros and cons,

this paper focuses on defining an alternative cache hierarchy

solution that allows both flexibility and efficiency in terms of

space allocation and snoop filtering.

(a)

L2

L3

(b)

Figure 1. A 3-Level CMP Cache Hierarchy: (a) Basic

Architecture, (b) L2/L3 inclusion policy

Figure 1(a) shows a typical CMP architecture with several

cores, each with a private L1 and a private L2 cache. A shared

L3 cache can be monolithic or can be implemented as a non-

uniform cache

Data Tag Data Tag Data Tag

Tag

CV

Data

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

160

access (NUCA) organization [12]. In a NUCA organization, the L3

is distributed across an interconnect and the access latency to an L3

bank is dependent on its distance from the requesting core. In such

an architecture, the latency to a small L2 cache is usually less than

ten clock cycles, whereas access to the L3 cache can be several tens

of clocks depending on the interconnect design. Figure 1(b)

illustrates the organization of the L3 cache and inclusion policy

with respect to the L2 caches (L2s). Each cache line in the L3 cache

contains the following key components (as illustrated in Fig 1b):

(1) the tag containing the higher order bits of the address, the state

information and the replacement bits, (2) the directory or core valid

bits indicating the potential presence of the cache line in the core’s

private L1/L2 caches and (3) the 64 byte data for the cache line

In an inclusive cache hierarchy, the L3 cache is enforced to be

inclusive of the L2 caches. As a result, every line in the L2 cache

can also be found in the L3 caches. When a cache line is evicted

from the L3 cache, a back-invalidate is generated to the appropriate

L2 caches (based on the core valid bits) and correspondent cache

lines are invalidated from the L2 caches before eviction from the

L3 cache. The use of an inclusive L2/L3 cache has the benefits of

complete snoop filtering, but also has the following limitations:

(a) Replication of data between the L2 and L3 cache reduces the

overall space efficiency. For example, a 256K L2 and a 2MB L3

bank can have a replication of up to ~12.5%.

(b) Inflexibility to bypass the L3 cache for transient or low

priority data. Research work on adaptive fill policies [17] has

recently shown that workloads possess significant amounts of

transient data and avoiding allocation of the data in the L3 cache

can improve the miss rate significantly. Recent work on quality of

service (QoS) [9][10] has also shown that it is desirable to allow

very low priority data to bypass the L3 cache. However, bypassing

the L3 cache cannot be allowed in an inclusive hierarchy, thereby

requiring a minimum occupancy in L3 cache even for low priority

or transient data.

(c) Inflexibility in terms of reducing L3 cache or increasing L2

caches. In an inclusive cache hierarchy, it is important to maintain

a size ratio of L3 cache to L2 cache of about 8:1. As a result,

increasing the L2 cache requires increasing the L3 cache

appropriately as well. However, with significant die budget

constraints, it is desirable to enable a cache hierarchy where L2

caches can be significantly larger and L3 caches are smaller in size.

In such scenarios, (semi-)exclusive hierarchies are much more

appropriate.

(d) A distributed shared L3 cache generally employs hashing

techniques to ensure that data access across the banks is uniform

(i.e. no particular bank becomes a hotspot due to the access

pattern). However, in such a configuration, private and shared data

accesses for any core incur the same average bank access latency.

If private data can be placed closer to the cores and shared data can

be placed in a central location, it is possible to improve access

latency significantly and thereby improve performance.

To solve the above limitations, we propose a novel cache hierarchy

approach called NCID -- Non-inclusive Cache, Inclusive

Directory. NCID enables data to be non-inclusive or semi-

exclusive or exclusive while maintaining tag inclusion to still keep

the snoop filtering capability. The contributions of this paper are

the following:

 We propose a new multi-level NCID cache hierarchy that

enables flexibility and cache space efficiency, and describe its

detailed hardware implementation.

 We demonstrate that NCID can reduce on-die interconnect

traffic significantly while still maintaining the performance

benefits of non-inclusive caches.

 We propose a selective allocation scheme based on NCID

support to optimize workloads that have a significant amount

of transient data.

 We show that using NCID, exclusive cache hierarchies can be

used while still maintaining the snoop filtering capability.

 We also show that NCID can support flexible data placement

in a distributed shared L3 cache by building a hybrid L2-L3

cache organization.

The rest of this paper is organized as follows. Section 2 describes

our proposed NCID architecture and discusses the implementation

considerations for NCID architectures. Section 3 outlines a range

of potential NCID architecture and policy options. In Section 3, we

also describe the methodology used to evaluate NCID options.

Section 4 presents the results from our detailed simulations and

analyzes performance implications of NCID architectures. Section

5 covers a comparison to related work. Section 6 summarizes our

key contributions and presents a direction for future work in this

area.

2. NCID ARCHITECTURE
In this section, we describe our proposed NCID architecture and

compare/contrast it with previous hierarchies. We will also discuss

the NCID implementation options along with associated hardware

cost.

 NCID Basics
Figures 2(a) – (c) summarize the cache hierarchy choices and the

pros/cons for each. As shown in the figure, the inclusive cache

hierarchy provides the benefits of complete snoop filtering, but

requires full data replication supported by back-invalidate

messages. Since most incoming snoops will miss in the L3, it is

guaranteed that the L2 caches do not need to be snooped since the

L3 is inclusive. The non-inclusive cache hierarchy is desirable

because it reduces the need for replication. In this hierarchy,

evictions from the L3 do not require back-invalidations to be sent

to the L2 caches. However, at the same time, it has the drawback of

requiring incoming snoops that miss in the L3 to be sent to all of the

L2 caches since it is not guaranteed that they will not be in the L3.

The figure also illustrates the exclusive cache hierarchy, where the

space usage is maximized by ensuring that any data in the L2 is not

replicated in the L3 and vice-versa. It should be noted that there are

a plethora of hybrid policies that are possible between inclusive

caches and exclusive caches which are referred to as semi-inclusive

or semi-exclusive caches.

Figure 2(d) illustrates the proposed NCID architecture. The key

objective of NCID is to decouple tag and data management in a

multi-level cache design. The L3 data is not required to be

inclusive while L3 tags are inclusive of all L2 tags. This is

accomplished by maintaining a larger number of tags than data

entries in the L3 cache. As shown in Figure 3, the number of tag

and directory array entries is larger than that of the data array, thus

some lines in L2 have their duplicated tags in L3 but no data is

required to exist in L3. In this paper, we call the extended tags in

the directory array as directory cache and the traditional cache

array as L3 cache. Since the space required for tags/directory is

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

161

L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2

L2 L2

snoop

L2

much smaller than the space required for data, this is a cost-

effective approach to maintain tag inclusion for snoop filtering

but relax data inclusion and allow either non-inclusive data

allocation or exclusive data allocation. To demonstrate that NCID

allows the L3 cache to be highly flexible, let us now review one

possible flow to understand the NCID-based hierarchy in a more

detailed fashion.

(a) Directory cache as a separate structure: In this approach,

as shown in Figure 3 (a), we design an independent associative

tag/directory structure to maintain additional addresses with no

associated data. This extended tag/directory structure is exclusive

with respect to the main tag/directory. It can have a different

indexing. Migration of addresses occurs between these structures

when the main tag/directory structure evicts an entry (which is

moved to extended directory) or when data for an address in the

extended tag/directory structure is requested by a core and it does

with the key requirement still being maintaining tag inclusion with

respect to the L2 caches.

(b) Directory cache as additional ways in the main tag

structure: In this approach, we can design the directory cache

entries as just additional ways in each set of the main tag structure.

In doing so, it should be noted that some ways are associated with

data and some are data-less. Differentiating these two different

(a) Inclusive

snoop

(b) Non-Inclusive

L2 L2

Inclusive Non-Inclusive
or Exclusive

L3

subsets of ways can be achieved in a static scheme or in a dynamic

scheme. For a static scheme as shown in Figure 3 (b), specific ways

are predetermined to be data-less. For a dynamic scheme as shown

in Figure 3 (c), any given way can be data-less as required at

runtime. This requires additional bits to be maintained to associate

the data with the ways. Overall, this approach of increasing ways in

each set avoids the complexity of maintaining an additional

directory structure. However, both the approaches can achieve the

snoop

(c) Exclusive

Directory

cache

(d) NCID

same functionality.

Directory cache Tag/CV Data

Figure 2. NCID Architecture Overview

• Upon a memory access that misses in all levels of cache, the

returning data is always provided to the L2 and can be allocated in

the L3 cache in one of the following ways: (a) the missing address

and core valid bits are installed in the main tag/directory and the

data is also stored in the data arrays or (b) the missing address and

core valid bits are installed in the extended tag/directory and the

data is not stored in the data arrays. The policy for deciding

Request

Tag

migration

(a) Separate structure

between these two options is kept flexible and will depend on

whether inclusive, non-inclusive or exclusive policies are desired.

• Upon an eviction from the L3 cache, the eviction can result in

the following different cases: (a) the address being evicted from the

L3 cache also has data associated with it in the data arrays. In this

case, it is possible to evict the data and retain the address in the

directory cache. (b) the address being evicted from the L3 cache

Tag/CV Data

Normal tag

Tag

Tag/CV Data

does not have data associated with it. In this case, back-invalidates

are generated to the L2 cache (based on the core valid bits in the Data-less tag
migration

directory). Once the L2 caches have evicted the data, the address

eviction is completed at the L3 cache.

• Upon an incoming snoop either from another socket or a lookup

from another core, the L3 and the directory cache is consulted to

find the location of the line in one or more L2 caches. If the line

does not exist, then the request is sent to memory. If the line exists

(but no data exists in the L3 cache), the request is forwarded to a L2

cache(s) that may have a cached copy.

 Hardware Implementation
NCID-based architectures can be implemented in one of two ways:

(b) Static scheme (c) Dynamic scheme

Figure 3. Implementation Options for NCID Directory Cache

 Hardware Cost of NCID
The additional die area cost of implementing NCID is the size of

the extended tag/directory required to maintain inclusive tags. The

size of additional tag/directory entries in the NCID architecture is a

function of the coverage it provides. We define coverage to be the

data array size that a tag array corresponds to. For example, 1MB

cache size needs about 80KB for its tag array, so we say that 80KB

of directory cache can provide a coverage of 1MB. Based on our

estimation, (assuming 64 bits of the physical memory address, 64B

L2

wb

Data pointer

L2 L2

backinvalidate

L2

L2 L2

Data CV Tag

L2

Tag CV Data

Tag CV Data

Tag

CV

Data

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

162

of cache line size, 8 bits for core valid bits, 2 bits for states), Figure

3 shows the size (in Kbytes) of the directory cache (per L3 cache

bank) as a function of coverage and L2 size. The x-axis shows the

L2 cache size and bars denote the coverage. The coverage of an

inclusive directory cache is generally required to be greater than

2X in order to ensure limited number of back-invalidates and

negligible impact on miss rate [1]. However, if replacement hints

are implemented, then the size of the directory cache can be

reduced down to 1X as well. We can see that to cover 256K L2

cache, a directory cache with 2X of coverage requires about 40KB.

Compared to a baseline L3 bank size of about 2M, this adds only

2% overhead.

180

160

140

120

100

80

60

40

20

0

256K 512K 1M

Coverage size for directory cache

Figure 4. Directory Size (main + extended) as a function of

cache size and coverage

3. NCID ARCHITECTURE OPTIONS AND

(4) NCID to support large L2, Smaller L3 configurations with

non-inclusive and exclusive hierarchies: Here, the L2 sizes are

increased from 256K to 2M (doubling along the way) and the L3

sizes are correspondingly reduced from 3M to 1M in order to the

keep the total die budget constant.

(5) NCID to support hybrid L3 configurations to improve

proximity to private data in the distributed shared L3: Here we

study the use of NCID to partition the L3 into a private and shared

area and allow private data to be cached closer to the core to reduce

latency.

We use a trace-driven platform simulator called ManySim [26] to

evaluate NCID options in CMP platforms. ManySim simulates the

platform resources with high accuracy, while abstracting the core

to optimize for speed. ManySim contains a detailed cache

hierarchy model, a detailed coherence protocol implementation, an

on-die interconnect model (simulating a bi-directional ring) and a

memory model that simulates the maximum sustainable bandwidth

specified in the configuration. In order to evaluate NCID options,

ManySim was modified to add the control for directory cache and

required protocol changes as well as various policies supported.

The simulated CMP architecture is similar to the one shown in

Figure 1. There are eight cores, with private L1 and L2 caches. All

cores share a distributed L3 cache consisting of 8 banks. Table 1

summarizes the simulation configurations.

EVALUATION METHODOLOGY
To show the effectiveness of NCID architectures, we evaluated

several NCID architecture options and policies. The NCID

architecture options can be placed into the following three broad

categories: (a) small L2, large L3 options, (b) larger L2, smaller L3

options and (c) hybrid L3 options. The first category (where

inclusive or non-inclusive policies are more applicable) evaluates

the utility of adding NCID functionality into a cache hierarchy

where the L2 size is small whereas each L3 bank size is much

NN--Inc

(1)

Base

Non-inc

Inc

++

N-Inc

5%

Selective

Allocation

Inc

++

95%

(2)

larger. The second category (where exclusive policies are more

applicable) evaluates the benefits of NCID when the L2 cache is

increased significantly and the L3 is correspondingly reduced to

maintain a constant die budget. The last category evaluates the

benefits of NCID to support flexible data placement in a distributed

shared L3 caches. All these options are compared against the base

inclusive cache hierarchy. As shown in Figure 5, we enumerate the

configurations being evaluated as follows (note that L3 in the

figure means L3 data only, and DIR means directory cache plus L3

N-Inc

5%

++

(3)

Cache QoS

Inc Ex

95%

++

(4)

Exclusive
data

Inc

tag):

(1) Base NCID: directory cache of 2X coverage of L2 caches added

to allow for a non-inclusive data allocation, but inclusive tag

allocation.

(2) NCID to support selective allocation policy to address transient

data: use probability to allocate some of the lines to the L3 cache

and some of the lines to the directory cache.

N-Inc

Hybrid
L3

Inc

++

(5)

(3) NCID to support QoS policy: Here, we show how the NCID

architecture allows low priority data to bypass L3 cache and

therefore improve cache efficiency as well as provide QoS.

Figure 5. NCID configurations under Evaluation

DIR
DIR

1x coverage

2x coverage

DIR L3

L2

L3
L3

L2 L2

DIR L3 DIR L3

L2
L2

S
iz

e
 o

f
d

ir
e
c

to
ry

 c
a

c
h

e
 (

K
B

)

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

163

Table 1. Simulation configurations Figure 6 (b) shows the corresponding miss rate reduction, which

matches the data for speedup. Figure 6 (c) shows the number of

snoop invalidation reduced by NCID. We can see that even in

256K_3M configuration where NCID performs the same as the

base inclusive cache, the number of snoop invalidations is reduced

significantly. Although this will not affect performance as the

simulated interconnect model has enough bandwidth, this has the

potential to reduce the power consumption on interconnect,

especially if a network-on-chip is employed for future CMP

platforms.

1.1

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

We use several commercial benchmark traces which include TPC-

C [22], TPC-E [23], SPECjbb2005 [20], SAP SD/2T [18].

Each trace is a long bus trace collected on Intel Xeon MP platform

with 8 hardware threads running simultaneously with the L2 cache

disabled. The traces include both instruction and data accesses,

synchronization and inter-thread dependencies.

4. RESULTS AND ANALYSIS
In this section, we present an in-depth evaluation of the

performance impact of NCID configurations. As we use various

L2/L3 cache size configurations, we use ―X_Y‖, where X is the L2

cache size per core and Y is the L3 cache size per core (note that

although the L3 is shared, the L3 size specified is averaged by the

number of cores). For example, 256K_2M means 256K L2 and 2M

L3 per core (or 16M L3 cache in total because there are 8 cores in

the configuration). We will show the performance speedup of using

NCID architecture compared to the base inclusive cache hierarchy.

 NCID Benefits for Non-inclusive

Hierarchies
Figure 6 compares the base NCID hierarchy with non-inclusive

data to the base inclusive cache configuration. The directory cache

coverage is maintained at 2X the total size of L2 caches in the

configuration. We choose 3 configurations: (a) 256K_2M, (b)

512K_2M, and (c) 1M_2M, where we fix the total L3 cache size as

16MB while increasing the L2 cache size.

1.02

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(a) NCID Speedup

(b) NCID L3 Miss Rate Reduction

(c) NCID Reduction in Snoop Invalidations

Figure 6 (a) shows the speedup of using NCID over the base

inclusive cache. As shown in the figure, the NCID configuration

provides equal or better performance as compared to the base

inclusive hierarchy. When the size ratio between L2 and L3 is high

(256K_3M bars), NCID does not provide additional benefit

because inclusion does not have a significant drawback. However,

as larger L2s are considered for latency reduction, the size ratio

between L2 and L3 is bound to shrink. In this case, the NCID

architecture provides a better speedup. In the last configuration

where 1M_2M is used, the speedup is up to 9%.

Figure 6. NCID Benefits (compared to inclusive cache

hierarchy)

 NCID Benefit for Transient Data

Optimizations
Previous research has shown that there exists a significant amount

of transient data in many workloads. For example, Qureshi et al

[17] proposed an adaptive fill policy to improve the cache

efficiency and performance.

tpcc sap sjbb tpce tpcc sap sjbb tpce tpcc sap sjbb tpce

256K_2M 512K_2M 1M_2M

tpcc sap sjbb tpce tpcc sap sjbb tpce tpcc sap sjbb tpce

256K_2M 512K_2M 1M_2M

tpcc sap sjbb tpce tpcc sap sjbb tpce tpcc sap sjbb tpce

256K_2M 512K_2M 1M_2M

Parameters Values

Core 2GHz

L1 I/D cache
32 Kbytes, 4-way, 64-byte

block

L2 cache 8-way, 64-byte block

L2 cache access time

10, 11, 12 and 13 cycles for

256K, 512K, 1M, and 2M

respectively

L3 cache
Varied (e.g. 1MB banks,

16-way, 64-byte)

L3 cache access time
28, 29, 30 cycles for 8M, 16M,

24M respectively

Interconnect bandwidth 128GB/s

Memory access time 400 cycles

Memory bandwidth 16GB/s

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

164

L3 DIR

Class A 100%

Class B 60%

Class C 40%

Class D 10%

L3

Allocation upon

Cache Miss

DIR

The adaptive fill policy introduces bi-modal fills, where 5% of the

lines are filled normally as Most Recent Used (MRU) lines, and

95% of the lines are filled vulnerably as Least Recent Use (LRU)

lines. They showed that employing set dueling with some leader

sets to choose normal fill and valuable fill dynamically in the run

time can allow cache performance to improve significantly. They

have also shown that this works better in a non-inclusive cache

than in an inclusive cache hierarchy because the vulnerable lines

can cause significant back-invalidations if the cache hierarchy is

inclusive. With NCID architecture, we evaluate a variant of bi-

modal fill policy (similar to selective allocation policy [9]), where

we allocate 5% of the allocations normally as MRU in L3 cache

and the remaining 95% vulnerably in the directory cache (which is

data-less).

We compare the base inclusive cache without transient data

optimizations to (a) inclusive cache with bi-modal fills and (b)

NCID cache with selection allocation. The configuration chosen

for this study is a 256K_1M configuration. Figure 7 shows the

speedup and miss rate reduction compared to the base inclusive

cache. The NCID approach the best performance for three of the

four workloads. Especially for SJBB, the performance is increased

by 45% (it should be noted that we validated this by characterizing

the SPECjbb cache usage patterns independently using a cache

simulator as well). For the SAP workload, we find that all three

approaches result in equal performance (because the set sampling

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1.2

1

0.8

0.6

0.4

0.2

0

tpcc sap sjbb tpce

(a) Speedup

tpcc sap sjbb tpce

(b) Miss rate reduction

approach ensures that the cache always runs with the normal fill

policy instead of the selective or bi-model fill policy).

 Using NCID to Improve QoS
Previous researchers have proposed QoS mechanisms in cache

[9][10] to address contention for shared resources between

multiple applications of differing priority running simultaneously

Figure 7. Benefits of NCID with Selective Allocation (256K_1M

configuration)

on a platform. Cache QoS allows for the OS/VMM to assign

classes of service to applications or virtual machines. Each class of

Normal Fill

Y
N

Limited Fill

service is associated with maximum cache space utilization that is

enforced either on allocation or replacement. However, with an

inclusive cache where allocation cannot be bypassed, even the

class with the lowest priority has to be assigned to certain amount

of L3 cache. For example, if the low priority application is running

on one core that has 256K private L2, the minimum L3 cache space

allocation for this application needs to be at least 512K (2X) in

order to ensure that the L2 is still usable. Otherwise, it makes the

private L2 under-utilized due the back invalidations. In addition,
some low priority applications may need only a small amount of

Rand() < AP?

Allocation Probabilities

(a) QoS Classes of service and probability-based allocation

tpcc occ sjbb occ tpcc speedup sjbb speedup

cache, i.e., L2 is enough, and bypassing L3 can provide more space

to other high priority applications. With the NCID architecture, L3

bypass is easy to achieve and this allows us to enhance the QoS

support in cache.

Here we show an example of employing probabilistic selective

allocation per class of service in L3 cache to provide cache QoS

enabled by NCID architecture. As shown in Figure 8(a), each class

of service is assigned X% probability. When a new line is filled

into L3 cache, a random number is generated. If this number is less

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

30%

0% (bypass)

1.4

1.2

1

0.8

0.6

0.4

0.2

0

than X%, it is allocated in L3 cache; otherwise it is allocated into

the directory cache. For class D in the example (0% probability), it

implies that all allocations for this class should bypass the L3

cache. Figure 8(b) shows the implications of employing different

allocation probabilities for SPECjbb as a low priority workload

running simultaneously with TPCC as a high priority application in

256K_2M configuration.

Probability to fill a line to L3 for SPECjbb (low priority)

(b) NCID Benefits via L3 bypass

Figure 8. NCID usage for improving Cache QoS features

bi-modal

selective allocation

bi-modal

selective allocation

L
3

 o
c

c
u

p
a

n
c

y

C
la

ss
 o

f
S

e
rv

ic
e

S
p

e
e

d
u

p

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

165

TPCC is always assigned 100% allocation probability, whereas the

probability for SPECjbb is varied from 100% down to 0%. The

bars show the L3 occupancy for these two applications. Note that

30% probability does not equal to 30% of cache occupancy.

improve significantly. As the overall performance is a function of

both access latency and the miss rate, 1.5M_1.5M becomes a sweet

point for these workloads.

Instead we see that SPECjbb still gets about 50% of the L3 cache.

The lines show the speedup or degradation. We can see that when

L3 bypass is employed, TPCC takes the whole L3 cache, and it

achieves about 16% speedup. For SPECjbb on the other hand, its

performance is degraded significantly. If the low priority workload

is streaming in nature and does not use the L3 cache as much, we

expect that its performance will maintain the same. This

architecture will be more desirable in a heterogeneous CMP

architecture, which has general-purpose cores and programmable

hardware engines (like a GPU for graphics processing), because

CPU workloads are generally more cache-friendly, and the

graphics engines are streaming in nature and generally do not

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

L2 hit L2 rt hit L3 hit miss to mem

require cache to improve performance.

 Using NCID to Support Exclusive Data

Figure 9. Hit and miss distribution of using NCID to support

exclusive data

Hierarchies
Some CMP architectures (e.g. AMD Barcelona) find it desirable

for the cache hierarchy to contain larger L2s and proportionately

smaller L3s. This is likely because larger L2s may reduce the stall

time in the cache hierarchy and smaller L3s are required to ensure

that the cache die budget remains constant for cost purposes. For

example, instead of a 256K L2 and a 3M L3 bank, a cache

hierarchy could consist of 1M L2s and 2M L3 banks. In such

scenarios it is important to avoid inclusion in the cache hierarchy

since it affects the miss rate significantly (as a result of replication

and back-invalidates). With the NCID architecture, we can support

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01

1

TPCC SAP

SJBB TPCE

MIX

exclusive cache hierarchies and complete snoop filtering. In an

exclusive cache hierarchy, it is sufficient to provide 1x directory

coverage in NCID because victims from L2 are sent to the L3.

For the sake of comparison, we choose 4 configurations: 256K_3M

as the base inclusive cache configuration, 1M_2M, 1.5M_1.5M

and 2M_1M as the configuration with exclusive data and inclusive

tag. These configurations are chosen to make the total size of L2

and L3 roughly the same. Figure 9 shows the hit/miss distribution

for four server workloads. In this evaluation, we also added a

―MIX‖ workload to simulate a server consolidation by running all

four workloads simultaneously with each one running on two

cores. We breakdown the total access to four parts: L2 hit (hits to

local private L2), L2 remote hit (hits to other private L2), L3 hit

(hits to L3), and miss to memory (the misses to the memory). We

can see that the percentage of L2 hit is increased significantly as

the L2 size is increased. For example, SPECjbb2005 has only 40%

of its accesses hit in the L2 in the base inclusive hierarchy, but has

close to 70% of its accesses hit in the L2 in the case where the L2

size is 1M and the L3 size is 2M.

Figure 10 shows the speedup of the 3 configurations compared to

the base inclusive cache. We can see that the performance is

increased by up to 7.5%. It is observed that SPECJBB and MIX

favor 2M_1M configuration, whereas the other three workloads

favors 1.5M_1.5M configuration. This is because both SPECJBB

and MIX have little sharing and increasing L2 cache size reduces

the access latency significantly. However, for the other three

workloads, there is significant sharing in the workload. Increasing

the L2 cache size ends up as replicating contents across multiple

L2s. In doing so, the overall cache space is affected negatively as

compared to the base case. We find that the L2 miss rate increases

for these workloads and therefore the performance does not

Figure 10. Speedup of using NCID to support exclusive data

1.14

1.12

1.1

1.08

1.06

1.04

1.02

1

TPCC SAP SJBB TPCE MIX

Figure 11. Speedup of limiting the shared data in L2 to be 20%

for 1M_2M configuration

To increase L2 hit as well as reducing the miss rate, we introduce a

mechanism to limit the amount of shared data in the L2s. A counter

is maintained in L2. If the shared data is exceeding the limit, only

the shared data is replaced. Figure 11 shows the benefits of limiting

shared data to 20% of the L2 cache size. We can see that by

limiting the shared data occupancy, the performance is increased

by up to 12%.

 Using NCID to Support Hybrid L3
Our final evaluation of NCID was to support hybrid L3 caches. A

basic distributed shared L3 cache does not allow flexible data

distribution across the L3 banks. The address hashing mechanism

is static -- essentially distributing addresses across the L3 banks

with no regard to which core is accessing which cache line. In order

to support a hybrid L3 cache that allows private data to be allocated

in a L3 bank closer to the core, we divided the L3 into two

TPCC SAP SJBB TPCE MIX

2M_1M

1.5M_1.5M

1M_2M

2
5
6
K

_
3

M

2
M

_
1

M

1
.5

M
_
1
.5

M

1
M

_
2

M

2
5
6
K

_
3

M

2
M

_
1

M

1
.5

M
_
1
.5

M

1
M

_
2

M

2
5
6
K

_
3

M

2
M

_
1

M

1
.5

M
_
1
.5

M

1
M

_
2

M

2
5
6
K

_
3

M

2
M

_
1

M

1
.5

M
_
1
.5

M

1
M

_
2

M

2
5
6
K

_
3

M

2
M

_
1

M

1
.5

M
_
1
.5

M

1
M

_
2

M

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

166

partitions using way partitioning [9]: (a) private partition and (b)

shared partition. While there are a lot of schemes that can be

implemented on a hybrid cache, this paper evaluates one scheme to

show the flexibility of the NCID architecture. The hybrid NCID

scheme works as follows: when a core misses the L2/L3 and

request a line from the memory, the data for that line is allocated

into the private partition of the L3 bank nearest to the core. The

address of the cache line is also allocated in the NCID directory in

order to keep track of the copies in the private L3 partitions. When

the line is evicted from this private partition, it is migrated to the

shared partition of a L3 bank that is determined by the static

address hashing mechanism. In addition, when a line becomes

shared, it is also migrated to the shared partition. The migration is

not on the critical path, so the performance is not affected.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(a) Hit/miss distribution

1.06

1.04

1.02

1

0.98

0.96

0.94

TPCC SAP SPECjbb TPCE Mix

(b) speedup

Figure 12. Benefits of using NCID for a hybrid L3

Figure 12 shows the data for hybrid L3s made possible by NCID

and compares it to the base shared cache. The base configuration is

256K_3M for shared cache. For hybrid cache, we essentially use

16 ways out of the 24 ways in a 3M L3 bank for the private

partition (i.e. 2M private partitions) and 8 ways out of the 24 ways

in a 3M L3 bank for the shared partition (1M shared partitions).

Employing the hybrid cache has two implications: (a) the average

access latency is affected due to local hit (a line is found in the

local bank) and remote hit (a line is found in a remote bank), and

(b) the overall miss rate to memory. Figure 12 (a) shows that

hit/miss distribution for all the four workloads and the consolidated

workload. We can see that for workloads with little sharing like

SPECjbb2005 and Mix, the local hit is increased significantly. For

example, the local bank hits increase from 12.5% in the shared case

to about 70% for the hybrid case. For workloads with sharing, the

improvement is moderate (e.g. from 12.5% in shared cache to 33%

in hybrid cache for TPC-C). Similar to the previous subsection the

performance is a function of both access latency and miss rate. So

Figure 12 (b) illustrates the speedup compared to the base shared

case. It is observed that both workloads that have a lot of sharing

like TPCC and TPCE get degradation about less than 1.3%,

whereas other workloads get improvement of up to 5%. We believe

that the improvement is relatively small in our configuration

because of the small-scale nature of the CMP evaluated. With

large-scale CMP architectures where the latency difference

between private and shared banks is higher, the performance

improvement is expected to be much more substantial.

5. RELATED WORK
Cache memories [19] have been studied over several decades now.

The implications of the inclusion property in a multi-level cache

hierarchy were first studied by Baer and Wang in [1]. Przybylski et

al [16] subsequently studied performance-optimal design of multi-

level caches. Jouppi et al [11] studied the implications of two-

level on-chip caching with specific focus on exclusive hierarchies.

Over the last two decades, microprocessors have been designed

with inclusive caches (such as Intel’s latest Nehalem processor

[8]) as well as exclusive caches (such as AMD’s Barcelona [24]

processor). Both inclusion and exclusion has its pros and cons and

the focus of this paper was on identifying a solution (NCID) that

combines the benefits of these by decoupling data and tag

management. The Piranha research prototype from Compaq [2],

comes close to an NCID instance, by implementing a non-

inclusive shared L2 with copies of L1 tags for snoop filtering.

In the context of CMP cache hierarchies, there have been several

recent papers that look at policies for better management of data

within a single level of cache as well as across the hierarchies

[3][4][5][6][12][15][25]. Kim et al [12] introduce the concept of

non-uniform cache architecture. In this paper, we adopt a

distributed shared L3 cache that essentially follows the NUCA

organization. We show how a non-inclusive cache with inclusive

directories can be implemented in a NUCA L3. In addition,

researchers have studied (full and selective) replication of victim

data in neighboring caches to reduce the number of memory

accesses. In addition, researchers have attempted to find

mechanisms to manage private and shared data more effectively in

order to improve cache efficiency. In this paper, we show how a

hybrid private-shared cache can be implemented effectively using

a NCID architecture. We show that the NCID architecture allows

for flexible placement of private and shared data such that private

data is placed in L3 banks closer to the core, whereas shared data is

placed in a more central location.

Researchers have also tried to improve the ability to handle

transient data [17] and low priority data [9][10] in shared caches. In

[17], Qureshi et al proposed the use of adaptive insertion policies to

minimize the impact of transient data, whereas Iyer et al study the

impact of restricting low priority data in cache to reduce its

interference impact on the performance of higher priority

applications [9][10]. In both cases, it is desirable to allow last-level

cache bypass for low priority data. However, an inclusive cache

hierarchy does not allow the ability to bypass the cache. In this

paper, we revisited the handling of transient and low-priority data

in the NCID architecture where the directory cache allows for an

efficient bypass mechanism for data allocation while retaining a

copy of the tag for snoop filtering.

Overall, we believe that NCID introduces a novel approach to

designing cache hierarchies by decoupling data and tag

management. Although not related at all, this can be viewed as

local hit remote hit miss

shared hybrid shared hybrid shared hybrid shared hybrid shared hybrid

TPCC SAP SPECjbb TPCE Mix

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

167

analogous to the decoupling of performance and correctness

achieved by Token coherence [13].

6. CONCLUSIONS AND FUTURE WORK
In this paper, we revisited the inclusion property of multi-level

cache hierarchies (inclusive, non-inclusive and exclusive). Since

these three inclusion policies are known to have benefits and

drawbacks in terms of space efficiency and snoop filtering

capability, we focused on identifying an alternative cache

hierarchy approach that allows for flexibility in data placement and

space efficiency, while retaining the ability to provide snoop

filtering. We described our proposed architecture (NCID – non-

inclusive cache, inclusive directory) that addresses the above

problem by decoupling data and tag management. We showed that

this decoupled approach of NCID enables the following benefits:

(a) it avoids data inclusion (enabling non-inclusive and exclusive

data policies) in the cache hierarchy and (b) it maintains tag

inclusion in the directory so that complete snoop filtering is still

maintained. We described the implementation considerations for

NCID and described how an extended directory can be achieved by

either implementing a separate extended tag structure or extending

the number of ways in each set of the main tag structure.

We also described a range of NCID-based architecture options

(base non-inclusive, selective allocation in NCID, QoS-aware

NCID, exclusive NCID and hybrid private-shared L3 with NCID)

that provide incremental to significant benefits (ranging from 2%

to 45%) for future CMP processors. We showed that implementing

a non-inclusive cache with transient data policies such as bi-modal

fills or selective allocation improves performance by as much as

45%. In addition, the NCID architecture allows low priority data to

bypass the L3 cache for QoS. Then, we presented exclusive

policies based on NCID that allowed for maximizing space

efficiency in the cache hierarchy and minimizing data access

latency through larger L2 caches. Last but not least, we presented

flexible handling of private/shared data in the NCID architecture to

improve cache efficiency (by limiting replication in the L2 caches)

and provide better proximity to private data as compared to shared

data per core.

In summary, we believe that implementing an NCID-based

architecture in future CMP platforms has significant value since it

maximizes space efficiency and provides flexibility by decoupling

snoop filtering (tag inclusion) from flexible data placement (data

non-inclusion). Although we evaluated quite a few NCID policy

options in this paper, we expect that there are additional policies

related to victim caching, use of replacement hints, etc that can be

exploited to optimize the NCID architecture significantly. We also

believe that a decoupled tag structure can be further reduced in size

by enabling coarse-grain structures. We also expect that

application of NCID architectures to lower-level cache hierarchies

(between L1 and L2 for instance) may be valuable.

REFERENCES

[1] J. L. Baer and W .H. Wang. ―On the inclusion properties for

multi-level cache hierarchies,‖ Proceedings of the 15th

Annual International Symposium on Computer Architecture,

page 73-80, 1988.

[2] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S.

Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha:

A Scalable Architecture Based on Single-Chip

Multiprocessing. Proceedings of the 27th Annual

International Symposium on Computer Architecture, pages

282–293, June 2000.

[3] Bradford M. Beckmann, Michael R. Marty, and David A.

Wood, ―ASR: Adaptive Selective Replication for CMP

Caches,― 39th International Symposium on Microarchitecture

(MICRO), December 2006.

[4] Bradford M. Beckmann and David A. Wood, ―Managing Wire

Delay in Large Chip-Multiprocessor Caches,‖ 37th

International Symposium on Microarchitecture (MICRO),

December 2004.

[5] L. Cheng, N. Muralimanohar, K. Ramani, R.

Balasubramonian, and J. Carter. Interconnect-Aware

Coherence Protocols for Chip Multiprocessors. In

Proceedings of ISCA-33, June 2006.

[6] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. ―Optimizing

replication, communication and capacity allocation in CMPs,‖

In the 32nd ISCA, pages 357–368, June 2005

[7] S. Ghai, J. Joyner, and L. John. Investigating the Effectiveness

of a Third Level Cache. Technical Report TR-980501-01,

Laboratory for Computer Architecture, The University of

Texas at Austin, May 1998.

[8] Intel® Microarchitecture (Nehalem),

http://www.intel.com/technology/architecture-silicon/n

ext-gen/

[9] R. Iyer, ―CQoS: A Framework for Enabling QoS in Shared

Caches of CMP Platforms,‖ 18th Annual International

Conference on Supercomputing (ICS’04), July 2004.

[10] R. Iyer, L. Zhao, et al., ―QoS Policies and Architecture for

Cache/Memory in CMP Platforms‖, the ACM SIGMETRICS

Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS), June 2007

[11] N. P. Jouppi and Steven J. E. Wilton, ―Tradeoffs in

Two-Level On-chip Caching,‖ Proceedings of the 21st annual

international symposium on Computer architecture 1994 ,

Chicago, Illinois, United States

[12] C. Kim, D.C. Burger, and S.W. Keckler, ―NUCA: A

Non-Uniform Cache Access Architecture for Wire-Delay

Dominated On-Chip Caches,‖ IEEE Micro Special Issue (Top

Picks in Computer Architecture), Nov/Dec 2003.

[13] M. M. K. Martin, M. D. Hill, and D. A. Wood. ―Token

coherence: Decoupling performance and correctness,‖ In the

30th ISCA, pages 182–193, June 2003.

[14] Michael R. Marty and Mark D. Hill, ―Virtual Hierarchies,‖

IEEE Micro Special Issue: Micro's Top Picks from

Microarchitecture Conferences, January-February 2008.

[15] N. Muralimanohar, R. Balasubramonian, ―Interconnect

Design Considerations in Large NUCA caches,‖ Proceedings

of the 34th annual international symposium on Computer

architecture 2007 , San Diego, California, USA

[16] S. Przybylski, M. Horowitz, and J. Hennessy, ―Characteristics

of performance-optimal multi-level cache hierarchies,‖ In

Proceedings of the 16th Annual international Symposium on

Computer Architecture (Jerusalem, Israel). ISCA '89. ACM,

New York, NY, 114-121. DOI=

http://doi.acm.org/10.1145/74925.74939

http://www.intel.com/technology/architecture-silicon/n
http://doi.acm.org/10.1145/74925.74939

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

168

[17] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and J.

Emer. ―Adaptive Insertion Policies for High-Performance

Caching‖, in the International Symposium on Computer

Architecture (ISCA), 2007

[18] Sap America Inc., ―SAP Standard Benchmarks,‖

http://www.sap.com/solutions/benchmark/index.epx

[19] A. J. Smith, ―Cache Memories,‖ ACM Computing Surveys,

Vol.14, No.3, September 1982.

[20] SPECjbb2005, http://www.spec.org/jbb2005/

[21] E. Speight, H. Shafi, L. Zhang, and R. Rajamony, ―Adaptive

Mechanisms and Policies for Managing Cache Hierarchies in

Chip Multiprocessors,‖ Proceedings of the 32nd annual

international symposium on Computer Architecture 2005.

[22] The TPC-C Benchmark, http://www.tpc.org/tpcc/

[23] The TPC-E Benchmark, http://www.tpc.org/tpce/

[24] B. Waldecker, ―AMD Quad Core Processor Overview‖,

http://www.amd.com/us-en/Processors/TechnicalResources/0

,,30_182,00.html

[25] M. Zhang and K. Asanovic. ―Victim replication: Maximizing

capacity while hiding wire delay in tiled CMPs‖, In the 32nd

ISCA, pages 336–345, June 2005.

[26] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni and D.

Newell, ―Exploring Large-scale CMP Architectures using

ManySim‖, IEEE Micro, July/August 2000

http://www.sap.com/solutions/benchmark/index.epx
http://www.spec.org/jbb2005/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpce/
http://www.amd.com/us-en/Processors/TechnicalResources/0

