
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

144

×

16 ×

×

4 8 16

Nano Repository: Coherence Tracking with

Amazingly Latency and Efficient Distributed Memory

throughout Many Systems

Dr K Venkataramana

1
 *, Dr. B.Purna Satyanarayana

2

1
*Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

2
 Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

k.venkata@thenalanda.com*, bpurnasatyanarayana@thenalanda.com

Abstract— With multi- and many-core chip-multiprocessors,
the sparse directory has become an essential component for
enabling the shared memory abstraction. There have been recent
attempts to find a solution to lessen the number of items in the
sparse directory. Examples include not tracking blocks that are
part of pages that the operating system (OS) has recognised as
private, not tracking blocks that belong to private regions at a
coarse grain, and not tracking a subset of blocks that the
hardware believes to be private. These methods necessitate
multi-grain coherence support, OS assistance, or broadcast-
based recovery in order to share an untracked block that has
been incorrectly assumed to be private. The resilient minimally-
sized sparse directory we create in this research can provide
appropriate performance while also being simple, scalable, and
OS-independent. the key milestones from two to three
transactions (two hops to three hops) for the blocks that
frequently receive shared read accesses We solve this issue by
designing a compact sparse directory that dynamically
recognises and tracks a predetermined subset of the blocks that
see a significant amount of shared accesses. We add an option to
the tiny directory proposal to track the coherence of the crucial
shared blocks that the tiny directory is unable to accommodate.
This option selectively spills into the LLC space. Our coherence
tracking concept running on a 128-core system with a wide range
of multi-threaded applications for scientific, general-purpose,
and commercial computing is supported by a thorough
simulation-based analysis.

first two levels being private, if the last level (L2) of the private

caches aggregated over all the cores can accommodate N blocks,

a
 1 sparse directory would track at most N/16 unique blocks at

a time. A replacement from the sparse directory invalidates or
retrieves (if dirty) the corresponding block from all the private
caches having a copy of the block.

The number of sparse directory entries is an important de-

terminant of end-performance. An undersized sparse directory

may experience premature eviction of tracking entries leading to

invalidation of the blocks corresponding to the evicted tracking

entries. Figure 1 shows the execution time of seventeen multi-

threaded applications as the number of entries in the sparse

directory is varied in a 128-core system. The results are nor-

malized to the execution time with a 2 sparse directory. All

sparse directories are eight-way set-associative.
1
 On average,

the execution time with
1 ×,

1 ×, and
 1 × sparse directories

 increases by 3%, 11% and 28%, respectively, compared to the

2 directory. Ocean cp is an outlier and improves in perfor-

mance with decreasing directory size because a smaller directory

converts a subset of performance-critical three-hop accesses

to two-hop accesses. Overall, reducing the coherence tracking

overhead without losing performance is important.

2.0
1.8
1.6
1.4
1.2
1.0
0.8

 to a 2× directory.
4 8 16

I. INTRODUCTION

Cache coherence protocols are central to the correctness of

shared memory abstractions in distributed parallel environments.

An important storage structure used by the scalable implemen-

tations of such protocols is the coherence directory, which is

responsible for keeping track of the current locations of the mem-

ory blocks in the cache hierarchy. In a single-chip many-core

system, the coherence directory maintains information about the

blocks resident in the private cache hierarchy of each processing

1
4
× 1

8
× 1

16
×

N
o

rm
a

li
ze

d

e
x

e
cu

ti
o

n
 t

im
e

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

145

×

core. The sparse directory organization [20], [32] has become

popular due to its simplicity and space-efficiency. The sparse

directory organizes the coherence tracking information in the

form of a cache, which can track only a limited number of blocks

at a time. For example, in a three-level cache hierarchy with the

A block allocated in the LLC either remains private through-

out its residency in the LLC or gets actively shared. To under-

stand the proportion of these two types of blocks, Figure 2 shows

the percentage of the allocated LLC blocks that experience a

maximum of k distinct sharers during the residency in the LLC

where k falls in four possible sharer count bins: 2 to 4, 5 to 8, 9 to

16, and 17 to 128 (end-points inclusive). These data are collected

on a 128-core system. The LLC is sized so that the number

of blocks is same as the number of entries that a 2 sparse

directory would have. These data show that, on average, 21%

of the allocated blocks observe sharing, while the rest remain

private during their residency in the LLC. While these data do

not show the absolute shared footprint, the SPECWeb and TPC

1 Section II discusses our simulation environment.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

146

[17, 128]

[9, 16]

[5, 8]

[2, 4]

N
o

rm
a

li
ze

d

e
x

e
cu

ti
o

n
 t

im
e

1
×

32 ×

16 32 64 128

16 32 64 128

16 32 64

90 2.75
2.50
2.25

70 2.00
60 1.75
50 1.50
40 1.25
30 1.00

20 0.75

10
0

Fig. 3. Performance with 1 ×, 1 ×,
1 ×, and

1 × sparse directories

Fig. 2. Distribution of maximum sharer count per allocated LLC block.

benchmark applications have much larger shared footprints than

most of the applications and they also carry out a larger number

of LLC fills.

Motivated by the observation in Figure 2, recent proposals

have explored several ways to reduce the number of sparse

directory entries that track private blocks [5], [13], [14], [15],

[47]. The data in Figure 2 also indicate that if a sparse directory

is dedicated to track only shared blocks, it can be small. We

conduct an experiment to find out how small such a sparse

directory can be. In this experiment, a block’s tracking entry is

allocated in the sparse directory only when the block enters the

shared state with two distinct sharers. The tracking entry stays in

the sparse directory until it is evicted from the directory or the

block reaches a state where it has no sharer or owner.
2
 As long

as a block remains private or is exclusively owned by a core,

it is tracked in a special structure of unbounded capacity. It is

important to note that if a block exhibits a sharing pattern where

it moves from one core to another while staying in an exclusively

for tracking shared blocks only. Tracking non-shared blocks has no overhead.
Results are normalized to a 2× sparse directory.

bits of the LLC data way of the block for tracking coherence in-

formation (Section III). In this design, a significant performance

problem arises when a block gets shared. Each sharing access

received by the LLC must be forwarded to an elected sharer,

which can supply the data block to the requester; the LLC cannot

supply the correct data block because portion of the LLC data

block is corrupted and used to track the sharers. We address this

performance shortcoming by architecting a tiny directory, which

is a novel sparse directory design for dynamically identifying

and tracking a critical subset of the blocks that experience most

shared accesses (Section IV). We also introduce the option of

selectively spilling a subset of the shared tracking entries into the

LLC space when the tiny directory is too small to track the crit-

ical shared working subset. This option, however, introduces the

new challenge of dynamically deciding the appropriate volume

of spills so that the volume of LLC misses does not get affected.

Simulation results show that our proposal implemented in a 128-

core system operating with a tiny directory of size ranging from owned state (E or M in our baseline MESI protocol), it is tracked 1 1

in the special unbounded structure and does not get allocated in

the sparse directory until and unless it enters the S state with two

sharers. Figure 3 quantifies the performance of such a design

with varying size of the sparse directory dedicated to track only

shared blocks. These results completely ignore the overhead of

the unbounded special structure that tracks the other blocks. As

the size of the sparse directory dedicated to track only shared

blocks is set to
 1 ×,

 1 ×,
 1 ×, and

1 ×, the average losses

in performance compared to a traditional 2× sparse directory
are 1%, 4%, 13%, and 28%, respectively. The

 1 ×,
 1 ×, and

32 × to 256 × performs within a percentage of a system with a

traditional 2× sparse directory (Section V).

A. Related Work

The early proposals focused on optimizing the coherence

directory store in the distributed shared memory multiprocessor

architectures. The first proposal on coherence directory design

introduced a bitvector as the directory element [7]. Since then

several designs have been proposed to optimize the coherence

directory storage in the distributed shared memory multiproces-

sors [1], [2], [4], [8], [9], [10], [12], [19], [20], [23], [28], [30],
 1

16 32
64 × sparse directories are eight-way set-associative, while the

128 sparse directory having just sixteen entries per LLC bank
is fully-associative. We have also conducted this experiment with
a four-way skew-associative sparse directory that employs a H3
hash-based Z-cache organization [36] for the

 1 ×,
 1 ×, and

[31], [42].
More recent proposals have focused on directory space op-

timization for chip-multiprocessors. Several proposals have at-

tempted to optimize the number of entries in the sparse directory.

Smart hash functions and skew-associative organizations for the
 1

16 32
64 × sizes. In this case, the performance losses are 0.5%, 3%,
and 12% respectively for

 1 ×,
 1 ×, and

 1 × sizes of the sparse
sparse directory have been proposed [16], [35]. Designs that

directory. These results indicate that even if the entire tracking
overhead of non-shared blocks is lifted from the sparse directory,

it is not possible to reduce the directory size to
 1 or less

using traditional techniques without suffering from noticeable

performance losses.

In this paper, we present a different ground-up approach for

designing a robust sparse directory having a minimal number of

entries. We retain the simplicity and scalability of a traditional

broadcast-free OS-independent block-grain coherence protocol.

We begin our exploration with an architecture that does not have

a sparse directory and consider the possibility of borrowing a few

2 In our implementation, all evictions from the private cache hierarchy are
notified to the directory [29]. The eviction notices for the blocks in E or S
state do not carry any data.

table and delay invalidations have also been explored [24]. Page-

grain classification between private and shared data has been

used to exclude private blocks from coherence tracking, thereby

effectively increasing the number of available directory entries

for tracking shared data [13]. A recently proposed design does

not invalidate private blocks on directory eviction, but resorts

to broadcast when such a block gets shared after the tracking

entry of the block is evicted from the sparse directory [14].

Recent proposals employing coarse-grain coherence tracking for

privately cached regions can further reduce the required number

of directory entries [5], [15], [47]. Proposals that track a small

set of sharing patterns and link each active directory entry to

a sharing pattern have been explored [50], [51]. The recently

proposed in-cache coherence tracking design uses the entire LLC

store the evicted directory entries in a memory-resident hash

 1
16 × 1

32 × 1
64 × 1

128
×

P
e

rc
e

n
ta

g
e

 o
f

a
ll

o
ca

te
d

 L
L

C
 b

lo
ck

s

80

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

147

[|

data block of an LLC tag for tracking coherence information for

that tag [17]. As we show in Section III, a design similar to this

proposal suffers from a large volume of three-hop transactions

for shared accesses. Compiler-generated hints about private data

have been used to optimize directory allocation [27]. Data-race-

free software, disciplined parallel programming models, and

self-invalidation of shared data at synchronization boundaries

have been used to significantly reduce the coherence directory

size or completely eliminate the coherence directory [11], [33],

[40].

In this study, we assume each sparse directory entry to be a

full-map bitvector and focus squarely on optimizing the number

of entries in the sparse directory. However, there have been

several proposals that optimize the average number of bits per

directory entry [15], [25], [35], [37], [46], [48], [49]. Any stan-

dard technique for limiting the width of the directory entry can

be seamlessly applied on top of our proposal to further reduce

the area of the sparse directory.

II. SIMULATION FRAMEWORK

We use an in-house modified version of the Multi2Sim simula-

tor [41] to model a chip-multiprocessor having 128 dynamically

scheduled out-of-order issue x86 cores clocked at 2 GHz. The

details are presented in Table I. The interconnect switch microar-

chitecture assumes a four-stage routing pipeline with one cycle

per stage at 2 GHz clock. The stages are buffer write/route com-

putation, virtual channel allocation, output port allocation, and

traversal through switch crossbar. There is an additional 1 ns link

latency to copy a flit from one switch to the next. The overall hop

latency is 3 ns. The applications for this study are drawn from

various sources and detailed in Table II (ROI refers to the parallel

region of interest). The inputs, configurations, and simulation

lengths are chosen to keep the simulation time within reasonable

limits while maintaining fidelity of the simulation results. The

PARSEC, SPLASH-2, and OMP applications are simulated in

execution-driven mode, while the rest of the applications are

simulated by replaying an instruction trace collected through the

PIN tool capturing all activities taking place in the application

address space. The PIN trace is collected on a 24-core machine

by running each multi-threaded application creating at most 128

threads (including server, application, and JVM threads). Before

replaying the trace through the simulated 128-core system, it is

pre-processed to expose maximum possible concurrency across

the threads while preserving the global order at global synchro-

nization boundaries and between load-store pairs touching the

same memory block (64 bytes).

III. IN-LLC COHERENCE TRACKING

This section discusses the design of an in-LLC coherence

tracking technique which does not have a sparse directory and

borrows few bits of the LLC block for tracking coherence

information. The design extends a traditional MESI coherence

protocol [26]. Section III-A discusses the organization of the

coherence states in the LLC. Section III-B introduces the small

extensions needed on top of the traditional MESI coherence

protocol. We evaluate the in-LLC coherence tracking technique

in Section III-C and understand the major shortcomings of this

design. This evaluation sets the stage for the tiny directory

design, which is our central contribution.

TABLE I
SIMULATION ENVIRONMENT

On-die cache hierarchy, interconnect, and coherence directory

Per-core iL1 and dL1 caches: 32 KB, 8-way, 2 cycles

Per-core unified L2 cache: 128 KB, 8-way, 3 cycles,
non-inclusive/non-exclusive, fill on miss, no back-inval. on eviction

Shared L3 cache: 32 MB, 16-way, 128 banks,
bank lookup latency 4 cycles for tag + 2 cycles for data,
non-inclusive/non-exclusive, fill on miss, no back-inval. on eviction

Cache block size, replacement policy at all levels: 64 bytes, LRU

Interconnect: 2D mesh clocked at 2 GHz, two-cycle link latency (1 ns),
four-cycle pipelined routing per switch (2 ns latency);
Each hop: a core, its L1 and L2 caches, one L3 cache bank,
one sparse directory slice tracking home blocks.

Sparse directory slice: 1-bit NRU replacement, 8-way
(fully-associative for

1 × and
1 × sizes)

128 256

Coherence protocol: write-invalidate MESI

Main memory

Memory controllers: eight single-channel DDR3-2133 controllers,
evenly distributed over the mesh, FR-FCFS scheduler

DRAM modules: modeled using DRAMSim2 [34], 12-12-12, BL=8,
64-bit channels, one rank/channel, 8 banks/rank, 1 KB row/bank/device,
x8 devices, open-page policy

A. Organization of Coherence States

A valid LLC block can be in one of three stable coherence
states: unowned/non-shared, exclusively owned by a core (in
E or M state), and shared by one or more cores. Additionally,
a pending/busy state is needed to handle transience. As in the
baseline, we assume two state bits per LLC block: valid (V) and
dirty (D). These two bits are used to encode four states of an

LLC block as depicted in Table III. The state encoding shown in
the last row is introduced for the purpose of in-LLC coherence

tracking. In this state, the first four bits (denoted b0, b1, b2, b3) of

the data block encode the extended state of the block as shown in

Table IV. The number of cores is assumed to be C. In summary,

when the LLC block state is (V=0, D=1), either 4 + log2(C)
bits or 4 + C bits of the data block are corrupted for tracking the

extended coherence states.

B. Coherence Protocol Extensions

The in-LLC coherence tracking mechanism minimally ex-

tends a traditional baseline write-invalidate MESI coherence

protocol. In the baseline protocol, an instruction read access to

the LLC is always responded to in S state even if the requester

is the only core accessing the block. This helps accelerate code

sharing.
4
 The baseline protocol assumes that all evictions from

the private cache hierarchy are notified to the LLC [29]; the

eviction notices for clean blocks do not carry any data. A request

that is forwarded to an owner core is responded directly to the

requester core with a notification to the home LLC bank for

clearing the busy/pending state of the involved cache block. As in

the AlphaServer GS320 protocol, a late intervention in the base-

line protocol is resolved by the owner core by keeping the evicted

block in a buffer until the eviction notice is acknowledged by the

home LLC bank [18].

In the in-LLC coherence tracking mechanism, an in-

valid (V=0, D=0) or unowned (V=1) LLC block enters a cor-

rupted state (V=0, D=1) when it is requested by a core. If the

access is an instruction read access, the block transitions to the

4 Existing code blocks may get written to during JIT compilation, dynamic
linking, and self-modification of code. These accesses come to the LLC as
data writes and are handled as usual like normal data writes.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

148

[|

TABLE II
SIMULATED APPLICATIONS

Suite Applications Input/Configuration Simulation length

PARSEC bodytrack sim-medium Complete ROI

swaptions sim-small

SPLASH-23
 barnes 32K particles Complete ROI

ocean cp 514 × 514 grid

SPEC

OMPM2001
314.mgrid ref input One charge, one iteration

316.applu train input Six pseudo-time-steps

324.apsi train input One time-step

330.art train 2 inputs Complete parallel section

SPEC JBB SPEC JBB 82 warehouses, single JVM instance Six billion instructions

TPC MySQL TPC-C 10 GB database, 2 GB buffer pool, 100 warehouses, 100 clients 500 transactions

MySQL TPC-E 10 GB database, 2 GB buffer pool, 100 clients Five billion instructions

MySQL TPC-H 2 GB database, 1 GB buffer pool, 100 clients, zero think time,
even distribution of Q6, Q8, Q11, Q13, Q16, Q20 across client threads

Five billion instructions

SPEC Web Apache HTTP server v2.2 Banking (SPEC Web-B), Ecommerce (SPEC Web-E), Support (SPEC Web-S);

Worker thread model, 128 simultaneous sessions, mod php module

Five billion instructions

SPEC JVM sunflow, compress Five operations Five billion instructions in ROI

3 The SPLASH-2 applications are drawn from the SPLASH2X extension of the PARSEC distribution.

TABLE III
LLC BLOCK STATES

V D State

0 0 Invalid

1 0 Valid, not modified, unowned, not shared

1 1 Valid, modified, unowned, not shared

0 1 Valid, either owned by a core or shared,
part of data block used for extended state encoding

TABLE IV
LLC BLOCK EXTENDED STATES

Bit State

b0 Dirty

b1 Pending/Busy

b2 Exclusively owned (b2 = 1) or shared (b2 = 0)

b3 Sharer encoding format:
If b3 = 1 then bits b4, . . . , b3+[log2(C)| encode a sharer/owner.

If b3 = 0 then bits b4, . . . , b3+C encode a C-bit sharer bitvector.

corrupted shared state (b2 = 0); otherwise it transitions to the

corrupted exclusive state (b2 = 1). The core id of the requester

is recorded using the pointer format (b3 = 1).

A read access to a block in the corrupted exclusive state further

changes the state of the block to the corrupted shared state, and

the requester obtains the data block from the exclusive owner.

A read access to a block in the corrupted shared state leaves the

block in the same state, and one of the sharers is elected on-

the-fly to supply the data block to the requester. In this case,

the critical path of the access increases to three hops (requester

to home LLC bank, home LLC bank to the elected sharer,

and elected sharer to the requester), instead of two hops in

the baseline protocol (LLC would have supplied the data block

in the baseline). The sharers are recorded using the bitvector

format (b3 = 0).

A read-exclusive access to a block in the corrupted exclusive
or corrupted shared state is handled similarly. In the latter case,

in addition to electing a sharer to supply the data block, all

sharers are invalidated and the LLC block is switched to the

corrupted exclusive state. The invalidation acknowledgements

are collected at the requester. In this case, the critical path

does not increase because even in the baseline, the invalidation

acknowledgements from the sharers must be collected at the re-

quester before the request can complete.
5
 In the in-LLC protocol,

5 Our simulated system implements sequential consistency and does not
support eager-exclusive responses [3], [18].

one of these invalidation acknowledgements is of a special type

and carries the required data block. An upgrade access to a block

in the corrupted shared state invalidates the sharers and the LLC

block transitions to the corrupted exclusive state.

An E state eviction (common case for clean private blocks)

notification from the private cache hierarchy carries the first

4+ log2(C) bits of the evicted data block to the LLC so that the

LLC can reconstruct the block. An M state eviction notification

from the private cache hierarchy carries the full data block to the

LLC, as usual. An S state eviction notification from the private

cache hierarchy does not carry any data with it, as in the baseline.

In all cases, the evicting core holds the block in a buffer until it

receives an acknowledgement from the LLC. This is required to

resolve late intervention races. On receiving an eviction notice

from the last sharer of a block in S state, the LLC sends a special

eviction acknowledgement to the sharer requesting it to send the

portion of the block necessary for reconstruction. The sharer

supplies the requested portion from the buffer where the block

is held.
On eviction of a corrupted dirty block from LLC, the cor-

rupted part of the block is reconstructed by querying either the

owner or an elected sharer depending on the extended state of

the block. If the block is found dirty in the private cache of the

owner, the entire block is sent to the LLC, as usual. All sharers

are back-invalidated.

The LLC needs to execute additional writes to the data array

for updating the coherence state. These writes are, however, off

the critical path and the LLC has ample free write bandwidth to

handle these. Also, the coherence action (if any) for a block in

the corrupted state (V=0, D=1) can be initiated only after the data

block is read out and the first few bits are examined. However,

this few cycles of additional delay in initiating the coherence

actions for a subset of the shared accesses constitutes a very

small percentage of the overall round-trip latency of a private

cache miss for the scale of the systems we are dealing with. As a

result, this additional delay has negligible impact on the overall

performance.

C. Performance Analysis

The in-LLC coherence tracking technique suffers from two

shortcomings. First, the read accesses to blocks in corrupted

shared state require three transactions in the critical path com-

pared to two transactions in the baseline sparse directory. This

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

149

×

[|

×

×

×

×

×

×

 1
∈ −

can be a major performance concern. Second, the reconstruction

of the LLC blocks introduces small additional network traffic in

the form of the first few bits (4 + log2(C) or 4 +C) of a subset

of the blocks evicted from the private cache hierarchy.

1.4

1.3

1.2

1.1

1.0

0.9

Fig. 4. Performance of in-LLC coherence tracking normalized to a 2 sparse
directory.

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

busy state waiting to complete forwarded shared read requests.

The writeback traffic increases due to inclusion of the first few

bits of the evicted block required for LLC block reconstruction

in some cases. The coherence traffic increases by more than 5%,

on average. This increase is primarily due to the extra forwarded

requests arising from the reads to the shared corrupted blocks.

100

80

60

40

20

0

Fig. 6. Percentage of LLC accesses which suffer an increase in critical path.

78%

12
10

8
6
4
2
0

Fig. 5. Interconnect traffic for in-LLC coherence tracking normalized to a

2× sparse directory.

Figure 4 quantifies the execution time of the in-LLC coher-

ence tracking mechanism normalized to a 2 sparse directory.

For each application, we evaluate two implementations. The

left bar corresponds to a storage-heavy implementation where

each LLC block’s tag is extended to track coherence. The right
bar corresponds to the in-LLC tracking mechanism that we

introduced in Sections III-A and III-B. According to Table I, the

number of blocks in the LLC is same as the number of entries

in a 2 sparse directory. As a result, the storage-heavy imple-

mentation delivers similar average performance as the baseline

2 sparse directory. On the other hand, the in-LLC tracking

mechanism introduced in this section suffers from an 11%

increase in execution cycles, on average. Several applications

suffer from more than 10% increase in execution time. For each

application, the difference in performance between the two bars

arises from the lengthened critical path (three-hop) of the read

requests to blocks in the shared corrupted state in the in-LLC

tracking mechanism that borrows data bits to maintain coherence

information. In the following, we study the performance of this

in-LLC coherence tracking mechanism in more detail.
Figure 5 quantifies the interconnect traffic (in bytes) of the in-

LLC tracking mechanism normalized to the 2 sparse directory

baseline. For each application, the left bar corresponds to the

2 sparse directory baseline and the right bar corresponds

to the in-LLC tracking mechanism that borrows data bits to

maintain coherence information. Each bar is divided into three

segments representing three different types of messages. The

private cache misses and their responses constitute the processor

messages. The eviction notices from the cores and their acknowl-

edgements constitute the writeback messages. The forwarded

requests from the home LLC bank and the corresponding busy-

clear messages (if any) coming back to the home LLC bank

Fig. 7. Percentage of allocated LLC blocks which experience lengthened
accesses.

Figure 6 shows, for each application, the percentage of the

LLC accesses that require a three-hop transaction in the in-

LLC protocol, while the baseline 2 sparse directory could have

served these through two-hop transactions. These are essentially

read accesses to blocks in the shared corrupted state. On average,

30% of LLC accesses suffer from an increase in the critical path.

For some of the commercial applications, among the lengthened

accesses, the code accesses are more in population than the

data accesses. Figure 7 further shows, for each application, the

percentage of the allocated LLC blocks which experience these

lengthened accesses. These blocks are a subset of those shown in

Figure 2. On average, 8% of the allocated LLC blocks cover all

the offending accesses. Barnes is a clear outlier with 78% of the

blocks experiencing lengthened accesses. Among the rest, only

bodytrack, swaptions, 316.applu, and TPC-H have more than

5% LLC fill population experiencing accesses with lengthened

critical path. This result clearly points to a viable sparse directory

design that can track this small fraction of LLC blocks and

eliminate the performance drawback of the in-LLC protocol.

This observation forms the foundation of our tiny directory

proposal.

To further understand the extent of sharing experienced by the

blocks considered in Figure 7, we introduce the Shared Three-

hop Read Access (STRA) ratio. The STRA ratio for an allocated

LLC block is the fraction of read accesses to the block which

need to be forwarded to a sharer because the state of the block

is shared corrupted. All blocks considered in Figure 7 have

non-zero STRA ratios and all other blocks have zero STRA

ratio. We classify the blocks with non-zero STRA ratios into

seven categories C1, . . . , C7. The category Ci for i ∈ [1, 6]
includes all LLC blocks with STRA ratio ∈ (1 − 1 , 1 − 1].

constitute the coherence messages. On average, the processor The category 2i−1 2i

and writeback traffic increases by about a percentage each in

the in-LLC tracking mechanism. The processor traffic increases

due to an increased volume of negative acknowledgements and

retries arising from a larger number of LLC blocks being in the

C7 includes all the LLC blocks with STRA ratio
(1 64 , 1]. Figure 8 shows the distribution of the allocated

LLC blocks with non-zero STRA ratios. Figure 9 shows the
distribution of the LLC read accesses to shared corrupted blocks

based on the category of the involved block. On average, we

In-LLC tag extended

In-LLC data bits borrowed

Coherence Writeback Processor

Data

Code

N
o

rm
a

li
ze

d

in
te

rc
o

n
n

ec
t

tr
a

ff
ic

N
o

rm
a

li
ze

d

e
x

e
cu

ti
o

n
 t

im
e

P
e

rc
e

n
ta

g
e

 o
f

a
ll

o
ca

te
d

L
L

C
 b

lo
ck

s

P
e

rc
e

n
ta

g
e

 o
f

L
L

C
 a

cc
e

ss
e

s

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

150

C1 C2 C3 C4 C5 C6 C7

100

80

60

40

20

C1 C2 C3 C4 C5 C6 C7

100

80

60

40

20

STRAC+OAC

see that categories C6 and C7 account for 54% of these LLC

accesses (Average bar in Figure 9), while these two categories

cover only 12% of the LLC blocks that source the offending

accesses (Average bar in Figure 8). This observation further

substantiates the possibility of a tiny directory, which can track

the coherence information of this small fraction of blocks.

0

Fig. 8. Distribution of the allocated LLC blocks based on the STRA ratio.

0

Fig. 9. Distribution of offending LLC accesses based on the accessed block
category.

IV. TINY DIRECTORY PROPOSAL

The tiny sparse directory augments the in-LLC coherence

tracking mechanism. The goal of the tiny directory design is

to track the coherence information pertaining to a subset of

blocks with high STRA ratio. However, the small size of the tiny

directory makes the selection of the blocks that are tracked in

the directory very important. There are two situations in which a

block can be considered for being tracked in the tiny directory:

(i) when a read request comes for a block which is in the cor-

rupted state, and (ii) when an instruction read request comes for

a block in unowned/non-shared/invalid state. As already noted,

instruction reads are always responded to in the shared state to

accelerate code sharing. In both these situations, if the block is

tracked in the tiny directory, the subsequent shared read requests

to such a block can be concluded using two-hop transactions.

The tiny directory design consults an allocation policy in these

two situations to decide if the requested block’s coherence infor-

mation should be tracked in the tiny directory. If the decision

is not to allocate a tiny directory entry for the block, the in-

LLC coherence tracking extensions, discussed in Section III-B,

are used to track coherence information for the block. On the

other hand, if the decision is to allocate a tiny directory entry for

the requested block, the LLC block is reconstructed (in case it

is in a corrupted state) by forwarding the request to an elected

sharer or the owner and asking the elected sharer or the owner

to not only forward the block to the requester but also send

the corrupted bits of the block to the LLC. The LLC block is

switched to a non-corrupted valid state. The coherence state of

the block is transferred to the allocated tiny directory entry for

further tracking.

On eviction of a tiny directory entry, instead of back-

invalidating the sharers, the evicted entry’s coherence state is

transferred to the corresponding LLC data block and the LLC

block transitions to an appropriate corrupted state. If the evicted

entry’s data block is not present in the LLC (such cases are

rare), the sharers are back-invalidated. For the best outcome, it is

important to carry out judicious allocations in the tiny directory

and minimize the number of pre-mature evictions. We explore

two allocation/eviction policies next.

A. Selective Allocation Policies

The selective allocation policies make use of the STRA ratio

that the LLC blocks would have experienced in the in-LLC

coherence tracking mechanism. In addition to the seven cat-

egories (C1, . . . , C7) of non-zero STRA ratio, we use C0 to

denote the category of blocks with zero STRA ratio. For esti-

mating the STRA ratio of an LLC block, two six-bit saturating

counters, namely STRA Counter (STRAC) and Other Access

Counter (OAC), are maintained for the block. The STRAC is

incremented on LLC read accesses which find the block being

requested in the shared state (such an access would have resulted

in a three-hop critical path in in-LLC coherence tracking). The

OAC is incremented on all other LLC accesses (except write-

back) to the block. Both the counters of the block are halved

when any of the counters has saturated. The STRA ratio estimate

for the block is given by the fraction

ST RAC . For the

blocks being tracked in the tiny directory, the directory entry is

extended by twelve bits to accommodate the two counters. For

the LLC blocks in corrupted state, twelve bits are borrowed from

the LLC data block to maintain the two counters (this lengthens

the corrupted portion by twelve more bits). When the coherence

information is transferred between a tiny directory entry and

the corresponding LLC data block, both the access counters

are also transferred. Once a block returns to the unowned/non-

shared state, the counters are reset and the STRA ratio for

the block is deemed zero. In the following, we discuss two

allocation/eviction policies for the tiny directory.

1) Dynamic STRA Policy: The Dynamic STRA (DSTRA)
policy first looks for an invalid way in the tiny directory target

set. If there is no such way, it locates the way w with the lowest

STRA category (say, Ci) in the target set. If there are multiple

ways with the lowest STRA category, the one with the lowest
physical way id is selected. Let the STRA category of the block

B for which the tiny directory allocation policy is invoked be Cj .

The DSTRA policy victimizes the entry w to track block B only

if i < j. In summary, this policy tries to track a subset of blocks

with maximum STRA ratio in the tiny directory. However, one
major shortcoming of this policy is that a block belonging to

the C7 STRA category, once tracked in the tiny directory, will

occupy a tiny directory entry for a long time until its STRA
ratio comes down. This becomes particularly problematic if the
block is not accessed for a long time. Our next policy proposal
remedies this problem.

2) DSTRA with Generational NRU Policy: The DSTRA

with generational not-recently-used policy (DSTRA+gNRU) di-

vides the entire execution into intervals or generations. Each

tiny directory entry is extended with two state bits, namely, a

reuse (R) bit and an eviction priority (EP) bit. When a tiny

directory entry is filled or accessed, the R bit of the entry is set

and the EP bit is reset, recording the fact that the entry has been

P
e

rc
e

n
ta

g
e

 o
f

a
ll

o
ca

te
d

 L
L

C

b
lo

ck
s

w
it

h
 n

o
n

-z
e

ro

S
T

R
A

 r
a

ti
o

P
e

rc
e

n
ta

g
e

 o
f

L
L

C
 a

cc
e

ss
e

s

w
h

ic
h

 s
u

ff
e

r
in

cr
e

a
se

in
 c

ri
ti

ca
l

p
a

th

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

151

B

recently accessed and must not be prioritized for eviction in the

current interval. At the end of each interval, the tiny directory

entries are examined and if an entry’s R bit is reset, its EP bit is

turned on signifying that the entry can be considered for eviction

in the next interval. The R bits of all entries are gang-cleared

at the beginning of each interval signifying the start of a new

generation of reuses.

The DSTRA+gNRU policy proceeds similarly to the DSTRA

policy and selects a way w with the lowest STRA category (Ci)

in the target set. If there are multiple ways with the lowest STRA
category, the ones with their EP bits set are selected and then
among them the one with the lowest physical way id is selected.

Let the STRA category of the block B for which the tiny di-

rectory allocation policy is invoked be Cj . The DSTRA+gNRU

policy victimizes the entry w to track block B only if one of the

two following conditions is met: (i) i < j, (ii) i == j and the

EP bit of w is set. The second condition effectively creates an

avenue for replacing useless entries of a certain STRA category.
The length of a generation needs to be chosen carefully. We
set the generation length to the interval between two consecutive
reuses to a tiny directory entry, averaged across all entries.
We dynamically estimate this interval as follows. The interval
length is measured in multiples of 4K cycles and the maximum
interval length that our hardware can measure is 4M cycles.

Each tiny directory slice attached to an LLC bank maintains
a ten-bit counter T which is incremented by one every 4K
cycles (measured using a twelve-bit counter). Each tiny directory
entry is extended by ten bits to record the value of counter T
whenever the entry is accessed. On an access to a tiny directory
entry, the last recorded value of counter T in the tiny directory

entry (Tlast) is compared with the current value of counter T in

the slice (Tcurrent). If Tlast < Tcurrent, the difference between

Tcurrent and Tlast is added to a counter A. The counter A is

maintained per tiny directory slice and records the accumulated
time between two consecutive accesses to a tiny directory entry.

Another counter B maintained per tiny directory slice records
the number of values added to counter A. At any point in time,
the generation length used by a tiny directory slice is estimated

as
A . At the beginning of an interval, this value is copied to a

generation length counter, which is decremented by one every
4K cycles. A generation ends when this counter becomes zero.

Both the counters A and B are halved when either of them has

saturated. When counter T saturates, it is reset to zero.

B. Introducing Robustness: Spilling into LLC

The tiny directory is only capable of identifying and tracking

the coherence state of a subset of blocks that are most likely to

suffer in terms of lengthened critical path of shared read accesses

in the in-LLC coherence tracking mechanism. Since the size of

this performance-critical shared working set of an application

is not known beforehand and may even vary during execution,

it is impossible to design an optimally-sized tiny directory that

can offer robust and reliable performance for a wide range

of applications. To address this problem, we augment the tiny

directory design with the option of selectively spilling a subset

of coherence tracking entries into the LLC. A spilled coherence

tracking entry occupies a tag and the corresponding data block

in the LLC. It is different from the data block for which co-

herence is being tracked. As a result, a fundamental challenge

in enabling a coherence tracking entry spill policy is to ensure

that the volume of LLC misses does not increase due to the

pressure of the spilled tracking entries. Section IV-B1 discusses

the organization and maintenance of a spilled coherence tracking

entry. Section IV-B2 describes the selective spill policy, which

identifies the coherence tracking entries eligible for spilling.

1) Organization of Spilled Entries: The reason for enabling
spilling of coherence tracking entries into the LLC is to avoid
lengthening the critical path of shared read accesses when the
tiny directory is unable to track all such shared blocks. As a

result, a coherence tracking entry EB of a block B can be spilled

into the LLC only if B is currently in the shared state. A spilled

coherence tracking entry EB is allocated in a way in the same set

as block B. Since B and EB have the same tag, this allocation
decision guarantees that in an LLC set, there can be at most two

tag matches on a lookup. To distinguish between the block B and

the block holding EB, we use the state (V=0, D=1) for the spilled

tracking entries. B cannot be in a corrupted state and hence, it
will have V=1. The LLC replacement policy always victimizes

a spilled coherence tracking entry EB before the corresponding

block B. This is ensured by the LRU position update policy of

the LLC: first, we move EB to the MRU position and then B to

the MRU position whenever B and EB are accessed. When EB
is chosen as a victim, the coherence information is transferred to

B and B switches to the corrupted shared state.

If an LLC lookup indicates two tag matches, we know that the
one with state V=1 corresponds to the data block and the other
one is the spilled coherence tracking entry for the block. On the
other hand, if the lookup returns a single tag match, the state of
the matched tag decides if the block is in a corrupted state (V=0,
D=1) or not (V=1). As usual, the tiny directory is always looked
up in parallel with the LLC and a tiny directory hit indicates that
the coherence of the block is being tracked in the tiny directory.

On an access to a data block B, if the coherence tracking entry

EB is also in the same set, the two blocks have to be read out

sequentially. To avoid lengthening the critical path, on a read

request, we read out the data block B first and respond to the

requester (recall that spilling is allowed only for blocks in the

shared state). Next, we read out EB and update the coherence

tracking information. On a read-exclusive request, we read out

EB first and send out the invalidations and also ask an elected

sharer to forward the data block to the requester. On an upgrade

request, we read out EB first and send out the invalidations.

For both read-exclusive and upgrade requests, the block EB is

invalidated and the coherence information is transferred to B,

which now switches to the corrupted exclusive state.

2) Selective Spill Policy: The selective spill policy for co-

herence tracking entries determines if the coherence information

of a block can be tracked by spilling it in the LLC. This policy is

invoked in two situations: (i) when the tiny directory’s allocation

policy declines to track the coherence information of a requested

block in the tiny directory, and (ii) eviction of a tiny directory

entry corresponding to a block in the shared state. If the policy

decision is not to spill in the LLC, the in-LLC coherence tracking

extensions are used to track the coherence information of the

involved block. If the policy decision is to spill in the LLC, a way

is allocated in the same LLC set as the involved block to track the

coherence information of the block. In this case, if the involved

block is found in a corrupted state in the LLC, it is reconstructed

following the reconstruction procedure discussed already and the

block transitions to a non-corrupted valid state (V=1).

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

152

≥

≥

−

×

≤ −

≤ −

≤ −

32 64 128 256 32 64

Whenever the spill policy is invoked, its goal is to allow

spilling of coherence tracking entries for blocks with high STRA
ratio. At the same time, the spill policy must keep a check on the

LLC miss rate for data blocks. Let Cj be the STRA category

of the block which is trying to spill its coherence tracking entry
in the LLC under one of the two aforementioned situations when
the spill policy is invoked. We formulate the selective spill policy
design problem as follows. The selective spill policy should

dynamically determine the STRA category Ci such that the

coherence tracking entries for the blocks with STRA category

Cj with j i can be spilled in the LLC whenever needed while

guaranteeing that the LLC miss rate for data blocks increases by

no more than a pre-defined value of δ. The value δ represents the

tolerance limit for LLC miss rate. Each LLC bank independently

implements this policy and determines a suitable Ci for the bank.

The index i of this computed Ci for an LLC bank will be referred

to as the STRA spill threshold category index of the bank and

this selective spill policy will be referred to as the Dynamic Spill
policy. We discuss its implementation in the following.

In each LLC bank, sixteen sets are kept aside that do not admit

any spilled coherence tracking entries. These sets are used to es-

timate the LLC bank’s miss rate without spilling (MRno−spill).

The remaining sets exercise spilling for STRA categories Cj
such that j i, given a dynamically computed STRA spill

threshold category index i for the LLC bank. From these sets,

the LLC bank’s miss rate with spilling (MRspill) can be de-

termined. We define a window of observation for an LLC bank

as 8K accesses (except writebacks) to the bank. At the end of

index value happens at a reasonably slow rate. At the end, to keep

the design simple, we decide to use our Dynamic Spill policy

without any change to arrest oscillation. Our evaluation of this

policy shows that even with the possibility of such oscillations in

certain phases, the increase in the LLC miss rate due to spilling

never exceeds the guarantee offered by the value of δ.

Selection of an appropriate δ is important for the success of
the proposed spill policy. We define the overall STRA ratio of an

application as the number of LLC reads to blocks in the shared

state over the total number of LLC accesses (except writebacks).

In general, if an application has a very low LLC miss rate, it

may not be able to tolerate a large increase in LLC miss rate

because such applications are typically very latency-sensitive.

On the other hand, if an application is undergoing a phase of

overall high STRA ratio, it may be possible to convert a larger

proportion of LLC hits to misses and gain in terms of shared read

hit latency by spilling more. Within each LLC bank, we measure

the miss rate and the overall STRA ratio. At the end of each

window of observation, each LLC bank independently classifies

the running application into four possible categories: (A) LLC

bank’s miss rate is at least 10% and STRA ratio is at least 0.4,

(B) LLC bank’s miss rate is at least 10% and STRA ratio is below

0.4, (C) LLC bank’s miss rate is below 10% and STRA ratio is at

least 0.4, and (D) LLC bank’s miss rate is below 10% and STRA

ratio is below 0.4. At the beginning of each observation window,

each LLC bank independently decides the value of δ to be used in

that bank depending on the category of the application observed

during the last window: δA =
1
 , δB =

1
 , δC =

1
 , δD =

1
 .

4 32 16 32

each observation window, if MRspill MRno spill + δ is

satisfied (meaning that due to spilling, the LLC bank’s miss rate

increases by no more than δ), the STRA spill threshold category

index i is decreased by one in that bank so that a bigger volume
of spills can be admitted in the next observation window. On the

other hand, if MRspill MRno spill + δ is not satisfied, i
for the bank is increased by one so that the spill volume can be

reduced. We note that the value of i saturates at zero and seven

on the two sides of the admissible range.

The aforementioned policy for dynamically determining the

STRA spill threshold category index may lead to oscillations in

the index value around the convergence point unless the index i
saturates to zero or seven. Such oscillations are easy to detect and

the STRA spill threshold category index can be fixed to one of

the two oscillation values such that MRspill MRno spill + δ
is satisfied. However, fixing the index value to avoid oscillation

may cause the state of the algorithm to get stuck at that index

value leading to lost opportunity of spilling more in certain

phases of execution. Coming out of such a state will require

complex mechanisms to detect phase changes when a new lower

index value can be tried. This is complicated by the fact that

MRspill for a certain STRA spill threshold category index can-

not be determined by sampling a few LLC sets (like the way we

determine MRno spill) because the spill volume distribution is

non-uniform and highly skewed toward the LLC sets that accom-
modate shared blocks. We, however, note two important aspects

about this oscillation. First, if an oscillation at all happens, it is

restricted to the few phases of execution that experience high to

moderate volumes of spilling because small amount of spilling

cannot change the LLC miss rate much. Second, since the length

of the observation window is quite large (8K accesses per bank

128 banks or 1M LLC accesses on average), the oscillation in the

The categories with higher STRA ratio are assigned higher δ
values while keeping the miss rate profile in mind. These values

may require tuning depending on the system configuration.

C. Coherence Processing Latency at LLC

Among the coherence processing paths traversed by the tiny

directory proposal at the LLC bank controller, there are two

situations where the critical path gets slightly lengthened com-

pared to the baseline. Both the cases arise from accessing a

block in the corrupted state. If the accessed block is in the

corrupted shared state, the LLC tag and data must be accessed

serially followed by decoding of the coherence state from the

data block before responding to the requester. In the baseline,

the critical path through the LLC bank controller for accessing

such a block would involve only the serial access of the LLC

tag and data (overlapped with sparse directory access). In this

case, we charge one extra cycle of LLC latency for the tiny

directory implementation accounting for the coherence state

decoding overhead. If the accessed block is in the corrupted

exclusive state, the tiny directory proposal must access the LLC

tag and data serially and then decode the coherence state before

forwarding the request to the owner. In the baseline, the critical

path through the LLC bank controller for accessing such a block

would involve only the LLC tag access latency overlapped with

the sparse directory lookup latency. In this case, the tiny direc-

tory proposal suffers from two additional cycles of LLC data

access latency (see Table I) followed by one cycle of coherence

state decoder latency. We model all these additional latencies in

our evaluation.

V. SIMULATION RESULTS

We evaluate our proposal in this section for four different tiny

directory sizes:
 1 ×,

 1 ×,
1 ×, and

1 ×. The
 1 × and

 1 ×

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

153

×

× ×

 1
×

× 256

×
×

×

×

64

×
×

× ×

64 ×

×
×

× ×256

128 256

32 64 128 256

 1 1
32 64 128

64
×

sizes have respectively 64 and 32 entries per tiny directory slice
attached to an LLC bank. Both these sizes exercise eight-way

set-associative directory slices. The
1 × and

1 × sizes have

Figure 7, we note that this critical subset accounts for 78% of

all allocated LLC blocks for barnes. Even for this application,

our tiny directory proposal is able to capture the instantaneous

respectively 16 and 8 entries per tiny directory slice and exercise working set of these critical blocks and deliver performance

fully-associative configurations. Each directory entry has a size close to a 2× directory. 1 1

of 155 bits (128-bit sharer vector, 12 bits for STRAC and OAC,

10 bits for the timestamp counter used to estimate the generation

length in the gNRU policy, two bits for R and EP states used by

the gNRU policy, one bit for pending/busy transient state, and

two coherence state bits for tracking invalid, exclusively owned

and shared states). Additionally, each directory entry has a tag

of the following lengths (we assume 48-bit physical address): 32

bits for
 1 ×, 33 bits for

 1 ×, 35 bits for

1 × and

1 ×. As a

Figures 12 and 13 evaluate our proposal for 128 and 256

sizes, respectively. At these two sizes, the gNRU policy gains
further in importance in several applications. On average, for the

128 size, the DSTRA and the DSTRA+gNRU policies have 6%
and 5% higher execution cycles compared to the 2 directory.
The dynamic spill policy assumes significant importance at these
small directory sizes and brings down the gap between our pro-

posal and the 2× directory to 1%. Referring back to Figure 3, we
result, the total storage investment for coherence tracking across

all 128 slices is as follows: 187 KB for
 1 ×, 94 KB for

 1 ×,
note that a sparse directory that tracks only shared blocks suffers

from a 28% slowdown for the
1 × size compared to a 2×

47.5 KB for 128 ×, and 23.75 KB for 256 ×.
1

Figures 10 and 11 evaluate our proposal for × and
directory, on average. Our tiny directory proposal successfully
wipes away this performance loss.

32
 1 sizes, respectively. These figures quantify the percent-

age increase in execution cycles compared to a 2 directory.

For each tiny directory size, we show the results with the

DSTRA allocation policy, DSTRA+gNRU allocation policy, and

DSTRA+gNRU augmented with dynamic spilling (DynSpill) of
coherence tracking entries. For the

 1 × size (Figure 10), both

For the
1 size (Figure 13), the DSTRA and the

DSTRA+gNRU policies have 8% and 6% higher execution cy-

cles compared to the 2 directory, on average. Dynamic spilling

reduces this gap to 1%. In summary, our tiny directory proposal
offers robust performance staying within a percentage of a sparse
2× directory as the tiny directory size is varied between

 1 × and

32

DSTRA and DSTRA+gNRU policies are, on average, within 1%
of the performance of 2 directory; when dynamic spilling is

enabled, the gap reduces to 0.5%. Referring back to Figure 4,
we note that the in-LLC coherence tracking mechanism is 11%

worse than the 2 directory. Introduction of a tiny directory

bridges this gap.
1.06

1.04

1.02

1.00

0.98

Fig. 10. Performance of
1 × tiny directory normalized to a sparse 2×

32
256 × (187 KB to 23.75 KB).

1.5
1.4
1.3
1.2
1.1

directory.

1.12
1.10
1.08
1.06

1.0
0.9

 1
1.04
1.02
1.00
0.98

Fig. 11. Performance of
1 tiny directory normalized to a sparse 2

directory.

For the
 1 size (Figure 11), the gNRU-assisted allocation

policy begins to gain in importance in some of the applica-
tions (ocean cp and SPECWeb). On average, the DSTRA policy

has 3% higher execution cycles compared to the 2 directory,

while the DSTRA+gNRU policy is only 2% away from the 2
directory. Dynamic spilling further brings this gap down to 1%.

Referring back to the discussion related to Figure 3, we note

that a skew-associative directory that tracks only shared blocks
suffers from a 12% slowdown for the

 1 × size compared to a 2×

Fig. 13. Performance of tiny directory normalized to a sparse 2
directory.

A. Analysis of Performance

The main purpose of the tiny directory proposal is to elim-

inate most of the additional three-hop transactions that the in-

LLC coherence mechanism introduced. When these three-hop

transactions get replaced by the two-hop transactions as in the

sparse 2 directory, the performance is expected to be similar

to the 2 directory. Referring back to Figure 6, we note that

the percentage of LLC accesses that suffer from an increased

critical path because they get extended to three-hop transactions

in the in-LLC coherence tracking mechanism is 30% on average.

To confirm that our proposal is able to address this problem

successfully, Figures 14 and 15 show the percentage of the LLC

accesses that suffer from an increase in the critical path for a

64
directory, on average. Our set-associative tiny directory without
dynamic spilling at this size performs far better underscoring the

success of the DSTRA and the DSTRA+gNRU policies which

capture a critical subset of the shared blocks. Referring back to

 1 1

32

1

DSTRA

DSTRA+gNRU

DSTRA+gNRU+DynSpill

DSTRA DSTRA+gNRU DSTRA+gNRU+DynSpill

1.30
1.25
1.20
1.15
1.10
1.05
1.00
0.95

DSTRA

DSTRA+gNRU

DSTRA+gNRU+DynSpill

directory.
Fig. 12. Performance of × tiny directory normalized to a sparse 2× 1

128

DSTRA

DSTRA+gNRU

DSTRA+gNRU+DynSpill

N
o

rm
a

li
ze

d

e
x

e
cu

ti
o

n
 t

im
e

N
o

rm
a

li
ze

d

e
x

e
cu

ti
o

n
 t

im
e

N
o

rm
a

li
ze

d

e
x

e
cu

ti
o

n
 t

im
e

N
o

rm
a

li
ze

d

e
x

e
cu

ti
o

n
 t

im
e

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

154

32 ×
× × 32 tiny directory system and a 256 tiny directory system,

the two extreme points of our size spectrum. For a
 1 tiny

directory, the DSTRA and the DSTRA+gNRU policies have

only 3% and 2% such LLC accesses on average. The

dynamic

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

155

32

256 ×

256

×

× × × ×

×

32 256

256 directories, this number is 59.5, 46.1, 16.6, and 17.5, re-

× × ×

spill policy brings this average to under 1%. For a
1 tiny

directory, this percentage increases significantly for the DSTRA

and the DSTRA+gNRU policies. These policies experience 23%

and 20% such LLC accesses respectively (still lower than in-

LLC mechanism), while the dynamic spill policy successfully

brings this average down to only 4%. These small residual extra

three-hop transactions cause a percent loss in performance.

12
10

8
6
4
2
0

Fig. 14. Percentage of LLC accesses which suffer from an increase in critical

path in a 1 × tiny directory.

3.00
2.75
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75

Fig. 16. Hits in tiny directory with the DSTRA+gNRU policy normalized to
the DSTRA policy.

80

60

40

20

0

Fig. 15. Percentage of LLC accesses which suffer from an increase in critical

path in a
1 × tiny directory.

The success of the tiny directory in reducing the number of

extra three-hop transactions depends on the number of hits that

a tiny directory entry enjoys. Figure 16 shows the number of

tiny directory hits for the DSTRA+gNRU policy normalized

to the DSTRA policy for all the four directory sizes. As the
directory size decreases from

 1 × to
1 ×, the gNRU policy

Fig. 17. Allocations in tiny directory with the DSTRA+gNRU policy
normalized to the DSTRA policy.

300
250
200
150
100

50
0

Fig. 18. Hits per allocation in tiny directory with the DSTRA+gNRU policy.

the percentage of the LLC accesses which are able to avoid

increase in critical path because of spilled directory entries when

using the DSTRA+gNRU+DynSpill policy. These are essentially

read accesses to the blocks, the coherence tracking entries of

32 gains in importance. On average, for 256 ×, ×, ×, and ×
which are spilled in the LLC. Without these spilled entries, these

32 64 128 256 accesses would get extended to three-hop transactions because
directories, the DSTRA+gNRU policy offers, respectively, 3%,
12%, 23%, and 39% more directory entry hits compared to the

DSTRA policy. The biggest beneficiaries of the gNRU policy are

bodytrack, swaptions, barnes, ocean cp, 330.art, and SPECWeb.

the data block would have been in the corrupted shared state. The

percentage of such LLC accesses increases significantly as the
tiny directory size drops. On average, for

 1 ×,
 1 ×,

1 ×, and

 1
32 64 128

The primary advantage of the gNRU policy is that it quickly
removes the useless directory entries, which the DSTRA policy

would have retained for a long time. This creates room for more

useful directory entries to be tracked. Figure 17 validates this

behavior by quantifying the number of allocations in the tiny

directory experienced by the DSTRA+gNRU policy normalized

to the DSTRA policy for all the four directory sizes. As the

directory size decreases from
 1 × to

1 ×, the gNRU policy

256 directories, 2%, 5%, 11%, and 16% LLC accesses benefit
from spilling. The biggest beneficiaries are bodytrack, barnes,

SPECWeb, and TPC.

50

40

30

20

10

0

allows a much larger number of directory fills to take place,
thereby significantly increasing the effective coverage of the
tiny directory. On average, for

 1 ×,
 1 ×,

1 ×, and

1 ×

Fig. 19. Percentage of LLC accesses which are able to avoid increase in
32 64 128 256 critical path because of spilled directory entries in the LLC when using the

directories, the DSTRA+gNRU policy observes, respectively,

2 , 7 , 50 , and 74 more directory fills compared to the

DSTRA policy. Figure 18 quantifies the average number of hits

enjoyed by a directory entry before getting replaced for the

DSTRA+gNRU policy. On average, for
1 ,

1 ,

1 , and
 1

32 64 128

spectively. This result confirms that the directory entries tracked

by the DSTRA+gNRU policy are indeed important. They enjoy

a significant number of hits before getting replaced even for the

smallest size.

Next, we analyze our dynamic spill policy which we have

shown to be highly robust across the board. There are two aspects

of the dynamic spill policy that we analyze. Figure 19 shows

DSTRA+gNRU+DynSpill policy.

The second aspect of the spill policy is its influence on the

LLC miss rate. We are particularly interested in the behavior

of the applications that already have high LLC miss rates in

the baseline. For example, the applications with more than

10% LLC miss rate include ocean cp (35% LLC miss rate),

314.mgrid (78%), 324.apsi (12%), 330.art (63%), SPECWeb-

B (14%), SPECWeb-E (19%), and SPECWeb-S (18%). Our Dy-

namic Spill policy guarantees an upper bound on the LLC miss

rate increase through the δ values. Figure 20 shows the increase
in LLC miss rate when using the DSTRA+gNRU+DynSpill

policy relative to the sparse 2× directory. As the tiny directory

 1 1 1 1

DSTRA DSTRA+gNRU DSTRA+gNRU+DynSpill

80
70
60
50
40
30
20
10

0

DSTRA DSTRA+gNRU DSTRA+gNRU+DynSpill

 1
256

× 1
128

× 1
64

× 1
32

×

 1
256
 1
128

×

×

 1
64
 1
32

×

×

 1
256

×
 1
128

× 1
64

× 1
32

×

 1
256

× 1
128

× 1
64

× 1
32

×

P
e

rc
e

n
ta

g
e

 o
f

L
L

C
 a

cc
e

ss
e

s

P
e

rc
e

n
ta

g
e

 o
f

L
L

C
 a

cc
e

ss
e

s

P
e

rc
e

n
ta

g
e

 o
f

L
L

C
 a

cc
e

ss
e

s
D

ir
e

ct
o

ry
 h

it
s

p
e

r
a

ll
o

ca
ti

o
n

D
ir

e
ct

o
ry

 a
ll

o
ca

ti
o

n
s

D
ir

e
ct

o
ry

 h
it

s

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

156

×
256

×

128 ×

 1
× ×

16

×

4 ×

×

×

256

256

64
) and an eight-way set-associative Stash directory for

8 16 32 64

256
 1 8 16 32

128 256

128 256

size decreases, the LLC miss rate increases very slowly. Only

316.applu and 330.art show more than 1% increase in the LLC

miss rate compared to the 2 directory. Across the board, the

maximum increase in the LLC miss rate due to spilling is
 % experienced by 316.applu when operating with a

1 ×

but requires 1 MB space for its directory data array and performs

2.5% worse than the
1 × tiny directory.

tiny directory. We note that this is within the smallest
256

δ (the

guaranteed upper bound on LLC miss rate increase) that we

use (Section IV-B2). The average increase in the LLC miss rate

is under 0.5% for all directory sizes.

3.0
2.5
2.0
1.5
1.0
0.5
0.0

Fig. 21. Execution cycles and energy normalized to the
exercising the DSTRA+gNRU+DynSpill policy.

C. Comparison to Related Proposals

 1
256

× tiny directory

−0.5

Fig. 20. Increase in LLC miss rate due to spilling when using
DSTRA+gNRU+DynSpill policy compared to a 2× sparse directory.

To further confirm that our proposal continues to offer ro-

bust performance for smaller LLC capacities, we evaluate our

proposal in a configuration where the entire cache hierarchy is

halved in terms of the number of sets (the capacity ratio between

different levels is maintained) i.e., the shared LLC capacity is

16 MB in both the baseline and our proposal. In this configu-

ration, compared to a sparse 2 directory, the DSTRA+gNRU

and DSTRA+gNRU+DynSpill policies experience an average

increase of 7% and 1% execution cycles for a
1 tiny direc-

tory (eight entries fully-associative per slice) where spilling is

quite prevalent.

Recent proposals have tried to reduce the number of sparse

directory entries by addressing the overhead of tracking the pri-

vate blocks. These contributions were reviewed in Section I-A.

By comparing Figure 3 with Figures 10, 11, and 12 we have

already shown that our proposal performs much better than a

sparse directory that tracks only shared blocks. None of the

recent proposals that try to reduce the overhead of tracking the

private blocks can perform better than the ideal sparse directory

that tracks only shared blocks. Nonetheless, for completeness,

we evaluate the state-of-the-art multi-grain directory (MgD) [47]

and the Stash directory [14]. The MgD invests just one directory

entry for a private region of size 1 KB, thereby saving signifi-

cantly on the overhead of tracking the private blocks. The Stash

directory does not track private blocks after the corresponding

directory entries are evicted and later if such a block gets shared,

it resorts to broadcast to reconstruct the directory entry. Figure 22
evaluates a skew-associative MgD for four sizes (

1 ×,
 1 ×,

 1 ×,

B. Energy Comparison and
 1 ×

8 16 32

We use CACTI [21] (distributed with McPAT [22]) to compute

the dynamic and leakage energy consumed by the LLC and the

sparse directory for 22 nm nodes. Figure 21 shows the dynamic,

leakage, and total energy of the LLC and the sparse directory

32 size. Compared to a 2 sparse directory, the MgD proposal

suffers from a 0.1%, 8%, 29%, and 63% increase in average

execution cycles for
1 ×,

 1 ×,
 1 ×, and

 1 × sizes, respectively.
The Stash directory at

 1 × size performs 41% worse than the

for the baseline configurations (from 2× to 1 ×) normalized to
32

2× directory on average. For comparison, we note that the

the

1 × tiny directory exercising the DSTRA+gNRU+DynSpill baseline sparse directory at
1 ×,

 1 ×, and
 1 × sizes performs

policy. We have also shown the 128 tiny directory in the figure.
Additionally, the figure includes the trends in the execution

cycles as well. As the baseline sparse directory size decreases,

the execution cycles monotonically increase, as expected. The

dynamic, leakage, and total energy expense first decreases as

the baseline directory size shrinks. However, beyond
1 size

of the baseline directory, the energy expense increases quickly
due to increasing execution cycles. Compared to the

1 ×

respectively 11%, 28%, and 71% worse than the 2 directory

on average. We find that the Stash directory is able to save a

significant volume of the private cache misses because it does not

back-invalidate the private blocks on sparse directory eviction.

However, the broadcast traffic becomes a major bottleneck in

this proposal, particularly for the scale of the systems we are

considering. In comparison, our proposal exercising directory
sizes between

1 × and
 1 × performs within 1% of a 2× sparse

256
tiny directory, the baseline dynamic energy is much lower. The
extra dynamic energy consumption in the tiny directory arises

directory.
256 32

primarily from the additional LLC writes that need to be done to

update the coherence information in the corrupted and the spilled

entries. On the other hand, the leakage and total energy expense

is much lower in the tiny directory due to the drastically reduced

size of the directory. The data array of a 2 directory is 8 MB

in capacity compared to 47.5 KB and 23.75 KB total sizes of

the
1 × and

1 × tiny directories. Overall, compared to the

baseline sparse 2× directory, our proposal saves 17% and 16%

of total LLC and directory energy for the

1 × and

1 × tiny
directory sizes, respectively. The baseline

1 × sparse directory

VI. SUMMARY AND FUTURE DIRECTIONS

We have presented a novel design to track coherence infor-

mation within a chip-multiprocessor. The design allows us to

significantly scale down the traditional sparse directory size. Our

proposal has three major components. First, it tracks the private

block owner by borrowing a few bits of the last-level cache

data block. Second, it employs a tiny directory that tracks the

coherence information of a critical subset of the blocks belong-

ing to the shared working set. Third, if the tiny directory is too

small to track all the critical shared blocks, the proposal employs

configuration comes closest to the
1 ×

4
tiny directory in terms dynamic selective spilling of the coherence tracking entries into

of total energy expense (4% more than the

1 × tiny directory), the LLC. Any remaining block is tracked by borrowing a few

 1
256

×
 1
128

× 1
64

× 1
32

×

1.6

1.4

1.2

1.0

0.8

0.6

0.4
2× 1× × 1 1 1

2 4
Baseline sparse directory size

×
8
× 1

16 × Tiny × 1
128

LLC+Dir. Total Energy

Execution Cycles

LLC+Dir. Dynamic Energy

LLC+Dir. Leakage Energy

In
cr

e
a

se
 i

n
 L

L
C

m
is

s
ra

te
 (

%
)

N
o

rm
a

li
ze

d
 e

x
ec

u
ti

o
n

cy
cl

e
s

a
n

d
 e

n
e

rg
y

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

157

and
1 ×

32
performs within 1% of a system with a 2×

3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

1.00

0.75

Fig. 22. Performance of
1 ×,

1 ×,
1 ×,

1 × multi-grain directory (MgD)

[20] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic
Requirements for Scalable Directory-based Cache Coherence Schemes.
In ICPP 1990.

[21] HP Labs. CACTI: An Integrated Cache and Memory Access Time,
Cycle Time, Area, Leakage, and Dynamic Power Model. Available at
http://www.hpl.hp.com/research/cacti/.

[22] HP Labs. McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. Available at
http://www.hpl.hp.com/research/mcpat/.

[23] D. James, A. Laundrie, S. Gjessing, and G. Sohi. Distributed Directory
Scheme: Scalable Coherent Interface. In IEEE Computer, June 1990.

[24] J. H. Kelm, M. R. Johnson, S. S. Lumetta, and S. J. Patel. WAYPOINT:
Scaling Coherence to Thousand-core Architectures. In PACT 2010.

[25] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L.
and 1 × 8 16 32 64 C. Kimerling, and A. Agarwal. ATAC: A 1000-core Cache-coherent

32 Stash directory normalized to a sparse 2× directory.

bits of the LLC data block. The simulation results on a 128-
core system for a wide range applications show that our proposal

operating with tiny directories of size ranging between
 1 ×

256 sparse

directory.

The application of the tiny directory proposal to inter-socket

coherence tracking in a multi-socket environment is the next

natural step to explore. We believe that this could be a promising

future direction for significantly reducing the space invested to

maintain the inter-socket coherence directory.

REFERENCES

[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A New Scalable
Directory Architecture for Large-scale Multiprocessors. In HPCA 2001.

[2] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A Two-Level
Directory Architecture for Highly Scalable cc-NUMA Multiprocessors.
In IEEE TPDS, January 2005.

[3] S. V. Adve and K. Gharachorloo. Memory Consistency Models for
Shared Memory Multiprocessors. WRL Research Report 95/9, December
1995.

[4] A. Agarwal, R. Simoni, J. L. Hennessy, and M. Horowitz. An Evaluation
of Directory Schemes for Cache Coherence. In ISCA 1988.

[5] M. Alisafaee. Spatiotemporal Coherence Tracking. In MICRO 2012.
[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark

Suite: Characterization and Architectural Implications. In PACT 2008.
[7] L. M. Censier and P. Feautrier. A New Solution to Coherence Problems

in Multicache Systems. In IEEE TC, December 1978.
[8] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS Directories:

A Scalable Cache Coherence Scheme. In ASPLOS 1991.

[9] Y. Chang and L. Bhuyan. An Efficient Hybrid Cache Coherence Protocol
for Shared Memory Multiprocessors. In ICPP 1996.

[10] G. Chen. SLiD – A Cost-effective and Scalable Limited-directory
Scheme for Cache Coherence. In PARLE 1993.

[11] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C. T. Chou. DeNovo: Rethinking
the Memory Hierarchy for Disciplined Parallelism. In PACT 2011.

[12] J. H. Choi and K. H. Park. Segment Directory Enhancing the Limited
Directory Cache Coherence Schemes. In IPDPS 1999.

[13] B. A. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. Duato. Increasing
the Effectiveness of Directory Caches by Deactivating Coherence for
Private Memory Blocks. In ISCA 2011.

[14] S. Demetriades and S. Cho. Stash Directory: A Scalable Directory for
Many-core Coherence. In HPCA 2014.

[15] L. Fang, P. Liu, Q. Hu, M. C. Huang, and G. Jiang. Building Expressive,
Area-efficient Coherence Directories. In PACT 2013.

[16] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo Direc-
tory: A Scalable Directory for Many-core Systems. In HPCA 2011.

[17] A. Garcia-Guirado, R. Fernandez-Pascual, and J. M. Garcia. ICCI: In-
cache Coherence Information. In IEEE TC, April 2015.

[18] K. Gharachorloo, M. Sharma, S. Steely, and S. vanDoren. Architecture
and Design of AlphaServer GS320. In ASPLOS 2000.

[19] S. Guo, H. Wang, Y. Xue, D. Li, and D. Wang. Hierarchical Cache
Directory for CMP. In Journal of Computer Science and Technology,
March 2010.

Processor with On-chip Optical Network. In PACT 2010.
[26] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable

Server. In ISCA 1997.
[27] Y. Li, R. G. Melhem, and A. K. Jones. Practically Private: Enabling

High Performance CMPs through Compiler-assisted Data Classification.
In PACT 2012.

[28] Y. Maa, D. Pradhan, and D. Thiebaut. Two Economical Directory
Schemes for Large-scale Cache Coherent Multiprocessors. In ACM
SIGARCH Computer Architecture News, September 1991.

[29] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why On-chip Cache
Coherence is Here to Stay. In CACM, July 2012.

[30] S. S. Mukherjee and M. D. Hill. An Evaluation of Directory Protocols
for Medium-scale Shared Memory Multiprocessors. In ICS 1994.

[31] H. Nilsson and P. Stenstrom. The Scalable Tree Protocol – A Cache
Coherence Approach for Large-scale Multiprocessors. In IPDPS 1992.

[32] B. O’Krafka and A. Newton. An Empirical Evaluation of Two Memory-
efficient Directory Methods. In ISCA 1990.

[33] A. Ros and S. Kaxiras. Complexity-effective Multicore Coherence. In
PACT 2012.

[34] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle
Accurate Memory System Simulator. In IEEE CAL, January-June 2011.

[35] D. Sanchez and C. Kozyrakis. SCD: A Scalable Coherence Directory
with Flexible Sharer Set Encoding. In HPCA 2012.

[36] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling Ways and
Associativity. In MICRO 2010.

[37] S. Shukla and M. Chaudhuri. Pool Directory: Efficient Coherence
Tracking with Dynamic Directory Allocation in Many-core Systems.
In ICCD 2015.

[38] R. Simoni and M. Horowitz. Dynamic Pointer Allocation for Scalable
Cache Coherence Directories. In Shared Memory Multiprocessing 1991.

[39] R. T. Simoni, Jr. Cache Coherence Directories for Scalable Multipro-
cessors. PhD dissertation, Stanford University, 1992.

[40] H. Sung, R. Komuravelli, and S. V. Adve. DeNovoND: Efficient Hard-
ware Support for Disciplined Non-determinism. In ASPLOS 2013.

[41] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A
Simulation Framework for CPU-GPU Computing. In PACT 2012.

[42] D. Wallach. PHD: A Hierarchical Cache Coherent Protocol. Ph.D.
dissertation, MIT, 1992.

[43] W.-D. Weber. Scalable Directories for Cache-coherent Shared-memory
Multiprocessors. Ph.D. dissertations, Stanford University, 1993.

[44] W.-D. Weber and A. Gupta. Analysis of Cache Invalidation Patterns in
Multiprocessors. In ASPLOS 1989.

[45] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. In ISCA
1995.

[46] Y. Yao, G. Wang, Z. Ge, T. Mitra, W. Chen, and N. Zhang. Select-
Directory: A Selective Directory for Cache Coherence in Many-core
Architectures. In DATE 2015.

[47] J. Zebchuk, B. Falsafi, and A. Moshovos. Multi-grain Coherence Direc-
tories. In MICRO 2013.

[48] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos. A Tagless
Coherence Directory. In MICRO 2009.

[49] L. Zhang, D. Strukov, H. Saadeldeen, D. Fan, M. Zhang, and D.
Franklin. SpongeDirectory: Flexible Sparse Directories Utilizing Multi-
Level Memristors. In PACT 2014.

[50] H. Zhao, A. Shriraman, S. Dwarkadas, and V. Srinivasan. SPATL: Honey,
I Shrunk the Coherence Directory. In PACT 2011.

[51] H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE: Sharing Pattern-
based Directory Coherence for Multicore Scalability. In PACT 2010.

MgD × 1
8

MgD × 1
16

MgD × 1
32

MgD × 1
64

Stash × 1
32

N
o

rm
a

li
ze

d
 e

x
e

cu
ti

o
n

 t
im

e

http://www.hpl.hp.com/research/cacti/
http://www.hpl.hp.com/research/mcpat/

