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Abstract— With multi- and many-core chip-multiprocessors, 
the sparse directory has become an essential component for 
enabling the shared memory abstraction. There have been recent 
attempts to find a solution to lessen the number of items in the 
sparse directory. Examples include not tracking blocks that are 
part of pages that the operating system (OS) has recognised as 
private, not tracking blocks that belong to private regions at a 
coarse grain, and not tracking a subset of blocks that the 
hardware believes to be private. These methods necessitate 
multi-grain coherence support, OS assistance, or broadcast-
based recovery in order to share an untracked block that has 
been incorrectly assumed to be private. The resilient minimally-
sized sparse directory we create in this research can provide 
appropriate performance while also being simple, scalable, and 
OS-independent. the key milestones from two to three 
transactions (two hops to three hops) for the blocks that 
frequently receive shared read accesses We solve this issue by 
designing a compact sparse directory that dynamically 
recognises and tracks a predetermined subset of the blocks that 
see a significant amount of shared accesses. We add an option to 
the tiny directory proposal to track the coherence of the crucial 
shared blocks that the tiny directory is unable to accommodate. 
This option selectively spills into the LLC space. Our coherence 
tracking concept running on a 128-core system with a wide range 
of multi-threaded applications for scientific, general-purpose, 
and commercial computing is supported by a thorough 
simulation-based analysis. 

first two levels being private, if the last level (L2) of the private 

caches aggregated over all the cores can accommodate N blocks, 

a 
 1  sparse directory would track at most N/16 unique blocks at 

a time. A replacement from the sparse directory invalidates or 
retrieves (if dirty) the corresponding block from all the private 
caches having a copy of the block. 

The number of sparse directory entries is an important de- 

terminant of end-performance. An undersized sparse directory 

may experience premature eviction of tracking entries leading to 

invalidation of the blocks corresponding to the evicted tracking 

entries. Figure 1 shows the execution time of seventeen multi- 

threaded applications as the number of entries in the sparse 

directory is varied in a 128-core system. The results are nor- 

malized to the execution time with a 2 sparse directory. All 

sparse directories are eight-way set-associative.
1
 On average, 

the execution time with 
1 ×, 

1 ×, and  
 1 × sparse directories

 increases by 3%, 11% and 28%, respectively, compared to the 

2 directory. Ocean cp is an outlier and improves in perfor- 

mance with decreasing directory size because a smaller directory 

converts a subset of performance-critical three-hop accesses 

to two-hop accesses. Overall, reducing the coherence tracking 

overhead without losing performance is important. 
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 to a 2× directory. 
4 8 16 

I. INTRODUCTION 

Cache coherence protocols are central to the correctness of 

shared memory abstractions in distributed parallel environments. 

An important storage structure used by the scalable implemen- 

tations of such protocols is the coherence directory, which is 

responsible for keeping track of the current locations of the mem- 

ory blocks in the cache hierarchy. In a single-chip many-core 

system, the coherence directory maintains information about the 

blocks resident in the private cache hierarchy of each processing 
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core. The sparse directory organization [20], [32] has become 

popular due to its simplicity and space-efficiency. The sparse 

directory organizes the coherence tracking information in the 

form of a cache, which can track only a limited number of blocks 

at a time. For example, in a three-level cache hierarchy with the 

A block allocated in the LLC either remains private through- 

out its residency in the LLC or gets actively shared. To under- 

stand the proportion of these two types of blocks, Figure 2 shows 

the percentage of the allocated LLC blocks that experience a 

maximum of k distinct sharers during the residency in the LLC 

where k falls in four possible sharer count bins: 2 to 4, 5 to 8, 9 to 

16, and 17 to 128 (end-points inclusive). These data are collected 

on a 128-core system. The LLC is sized so that the number 

of blocks is same as the number of entries that a 2 sparse 

directory would have. These data show that, on average, 21% 

of the allocated blocks observe sharing, while the rest remain 

private during their residency in the LLC. While these data do 

not show the absolute shared footprint, the SPECWeb and TPC 

1 Section II discusses our simulation environment. 
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Fig. 3. Performance with  1 ×,  1 ×,  
1 ×, and  

1 × sparse directories 

Fig. 2. Distribution of maximum sharer count per allocated LLC block. 

benchmark applications have much larger shared footprints than 

most of the applications and they also carry out a larger number 

of LLC fills. 

Motivated by the observation in Figure 2, recent proposals 

have explored several ways to reduce the number of sparse 

directory entries that track private blocks [5], [13], [14], [15], 

[47]. The data in Figure 2 also indicate that if a sparse directory 

is dedicated to track only shared blocks, it can be small. We 

conduct an experiment to find out how small such a sparse 

directory can be. In this experiment, a block’s tracking entry is 

allocated in the sparse directory only when the block enters the 

shared state with two distinct sharers. The tracking entry stays in 

the sparse directory until it is evicted from the directory or the 

block reaches a state where it has no sharer or owner.
2
 As long 

as a block remains private or is exclusively owned by a core, 

it is tracked in a special structure of unbounded capacity. It is 

important to note that if a block exhibits a sharing pattern where 

it moves from one core to another while staying in an exclusively 

for tracking shared blocks only. Tracking non-shared blocks has no overhead. 
Results are normalized to a 2× sparse directory. 

bits of the LLC data way of the block for tracking coherence in- 

formation (Section III). In this design, a significant performance 

problem arises when a block gets shared. Each sharing access 

received by the LLC must be forwarded to an elected sharer, 

which can supply the data block to the requester; the LLC cannot 

supply the correct data block because portion of the LLC data 

block is corrupted and used to track the sharers. We address this 

performance shortcoming by architecting a tiny directory, which 

is a novel sparse directory design for dynamically identifying 

and tracking a critical subset of the blocks that experience most 

shared accesses (Section IV). We also introduce the option of 

selectively spilling a subset of the shared tracking entries into the 

LLC space when the tiny directory is too small to track the crit- 

ical shared working subset. This option, however, introduces the 

new challenge of dynamically deciding the appropriate volume 

of spills so that the volume of LLC misses does not get affected. 

Simulation results show that our proposal implemented in a 128- 

core system operating with a tiny directory of size ranging from owned state (E or M in our baseline MESI protocol), it is tracked 1 1   

in the special unbounded structure and does not get allocated in 

the sparse directory until and unless it enters the S state with two 

sharers. Figure 3 quantifies the performance of such a design 

with varying size of the sparse directory dedicated to track only 

shared blocks. These results completely ignore the overhead of 

the unbounded special structure that tracks the other blocks. As 

the size of the sparse directory dedicated to track only shared 

blocks is set to
 1 ×,  

 1 ×,  
 1 ×, and 

 
 

1  ×, the average losses 

in performance compared to a traditional 2× sparse directory 
are 1%, 4%, 13%, and 28%, respectively. The 

 1 ×, 
 1 ×, and 

32 × to 256 × performs within a percentage of a system with a 

traditional 2× sparse directory (Section V). 

A. Related Work 

The early proposals focused on optimizing the coherence 

directory store in the distributed shared memory multiprocessor 

architectures. The first proposal on coherence directory design 

introduced a bitvector as the directory element [7]. Since then 

several designs have been proposed to optimize the coherence 

directory storage in the distributed shared memory multiproces- 

sors [1], [2], [4], [8], [9], [10], [12], [19], [20], [23], [28], [30], 
 1 

16 32 
64 × sparse directories are eight-way set-associative, while the 

128 sparse directory having just sixteen entries per LLC bank 
is fully-associative. We have also conducted this experiment with 
a four-way skew-associative sparse directory that employs a H3 
hash-based Z-cache organization [36] for the

 1 ×,
 1 ×, and 

[31], [42]. 
More recent proposals have focused on directory space op- 

timization for chip-multiprocessors. Several proposals have at- 

tempted to optimize the number of entries in the sparse directory. 

Smart hash functions and skew-associative organizations for the 
 1 

16 32 
64 × sizes. In this case, the performance losses are 0.5%, 3%, 
and 12% respectively for

 1 ×,
 1 ×, and

 1 × sizes of the sparse 
sparse directory have been proposed [16], [35]. Designs that 

 
directory. These results indicate that even if the entire tracking 
overhead of non-shared blocks is lifted from the sparse directory, 

it is not possible to reduce the directory size to 
 1     or less 

using traditional techniques without suffering from noticeable 

performance losses. 

In this paper, we present a different ground-up approach for 

designing a robust sparse directory having a minimal number of 

entries. We retain the simplicity and scalability of a traditional 

broadcast-free OS-independent block-grain coherence protocol. 

We begin our exploration with an architecture that does not have 

a sparse directory and consider the possibility of borrowing a few 

2 In our implementation, all evictions from the private cache hierarchy are 
notified to the directory [29]. The eviction notices for the blocks in E or S 
state do not carry any data. 

table and delay invalidations have also been explored [24]. Page- 

grain classification between private and shared data has been 

used to exclude private blocks from coherence tracking, thereby 

effectively increasing the number of available directory entries 

for tracking shared data [13]. A recently proposed design does 

not invalidate private blocks on directory eviction, but resorts 

to broadcast when such a block gets shared after the tracking 

entry of the block is evicted from the sparse directory [14]. 

Recent proposals employing coarse-grain coherence tracking for 

privately cached regions can further reduce the required number 

of directory entries [5], [15], [47]. Proposals that track a small 

set of sharing patterns and link each active directory entry to 

a sharing pattern have been explored [50], [51]. The recently 

proposed in-cache coherence tracking design uses the entire LLC 

store the evicted directory entries in a memory-resident hash 
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data block of an LLC tag for tracking coherence information for 

that tag [17]. As we show in Section III, a design similar to this 

proposal suffers from a large volume of three-hop transactions 

for shared accesses. Compiler-generated hints about private data 

have been used to optimize directory allocation [27]. Data-race- 

free software, disciplined parallel programming models, and 

self-invalidation of shared data at synchronization boundaries 

have been used to significantly reduce the coherence directory 

size or completely eliminate the coherence directory [11], [33], 

[40]. 

In this study, we assume each sparse directory entry to be a 

full-map bitvector and focus squarely on optimizing the number 

of entries in the sparse directory. However, there have been 

several proposals that optimize the average number of bits per 

directory entry [15], [25], [35], [37], [46], [48], [49]. Any stan- 

dard technique for limiting the width of the directory entry can 

be seamlessly applied on top of our proposal to further reduce 

the area of the sparse directory. 

 

II. SIMULATION FRAMEWORK 

We use an in-house modified version of the Multi2Sim simula- 

tor [41] to model a chip-multiprocessor having 128 dynamically 

scheduled out-of-order issue x86 cores clocked at 2 GHz. The 

details are presented in Table I. The interconnect switch microar- 

chitecture assumes a four-stage routing pipeline with one cycle 

per stage at 2 GHz clock. The stages are buffer write/route com- 

putation, virtual channel allocation, output port allocation, and 

traversal through switch crossbar. There is an additional 1 ns link 

latency to copy a flit from one switch to the next. The overall hop 

latency is 3 ns. The applications for this study are drawn from 

various sources and detailed in Table II (ROI refers to the parallel 

region of interest). The inputs, configurations, and simulation 

lengths are chosen to keep the simulation time within reasonable 

limits while maintaining fidelity of the simulation results. The 

PARSEC, SPLASH-2, and OMP applications are simulated in 

execution-driven mode, while the rest of the applications are 

simulated by replaying an instruction trace collected through the 

PIN tool capturing all activities taking place in the application 

address space. The PIN trace is collected on a 24-core machine 

by running each multi-threaded application creating at most 128 

threads (including server, application, and JVM threads). Before 

replaying the trace through the simulated 128-core system, it is 

pre-processed to expose maximum possible concurrency across 

the threads while preserving the global order at global synchro- 

nization boundaries and between load-store pairs touching the 

same memory block (64 bytes). 

 
III. IN-LLC COHERENCE TRACKING 

This section discusses the design of an in-LLC coherence 

tracking technique which does not have a sparse directory and 

borrows few bits of the LLC block for tracking coherence 

information. The design extends a traditional MESI coherence 

protocol [26]. Section III-A discusses the organization of the 

coherence states in the LLC. Section III-B introduces the small 

extensions needed on top of the traditional MESI coherence 

protocol. We evaluate the in-LLC coherence tracking technique 

in Section III-C and understand the major shortcomings of this 

design. This evaluation sets the stage for the tiny directory 

design, which is our central contribution. 

TABLE I 
SIMULATION   ENVIRONMENT 

 
 

On-die cache hierarchy, interconnect, and coherence directory 

Per-core iL1 and dL1 caches: 32 KB, 8-way, 2 cycles 

Per-core unified L2 cache: 128 KB, 8-way, 3 cycles, 
non-inclusive/non-exclusive, fill on miss, no back-inval. on eviction 

Shared L3 cache: 32 MB, 16-way, 128 banks, 
bank lookup latency 4 cycles for tag + 2 cycles for data, 
non-inclusive/non-exclusive, fill on miss, no back-inval. on eviction 

Cache block size, replacement policy at all levels: 64 bytes, LRU 

Interconnect: 2D mesh clocked at 2 GHz, two-cycle link latency (1 ns), 
four-cycle pipelined routing per switch (2 ns latency); 
Each hop: a core, its L1 and L2 caches, one L3 cache bank, 
one sparse directory slice tracking home blocks. 

Sparse directory slice: 1-bit NRU replacement, 8-way 
(fully-associative for  

1  × and   
1  × sizes) 

128 256 

Coherence protocol: write-invalidate MESI 

Main memory 

Memory controllers: eight single-channel DDR3-2133 controllers, 
evenly distributed over the mesh, FR-FCFS scheduler 

DRAM modules: modeled using DRAMSim2 [34], 12-12-12, BL=8, 
64-bit channels, one rank/channel, 8 banks/rank, 1 KB row/bank/device, 
x8 devices, open-page policy 

 

A. Organization of Coherence States 

A valid LLC block can be in one of three stable coherence 
states: unowned/non-shared, exclusively owned by a core (in 
E or M state), and shared by one or more cores. Additionally, 
a pending/busy state is needed to handle transience. As in the 
baseline, we assume two state bits per LLC block: valid (V) and 
dirty (D). These two bits are used to encode four states of an 

LLC block as depicted in Table III. The state encoding shown in 
the last row is introduced for the purpose of in-LLC coherence 

tracking. In this state, the first four bits (denoted b0, b1, b2, b3) of 

the data block encode the extended state of the block as shown in 

Table IV. The number of cores is assumed to be C. In summary, 

when the LLC block state is (V=0, D=1), either 4 + log2(C) 
bits or 4 + C bits of the data block are corrupted for tracking the 

extended coherence states. 

B. Coherence Protocol Extensions 

The in-LLC coherence tracking mechanism minimally ex- 

tends a traditional baseline write-invalidate MESI coherence 

protocol. In the baseline protocol, an instruction read access to 

the LLC is always responded to in S state even if the requester 

is the only core accessing the block. This helps accelerate code 

sharing.
4
 The baseline protocol assumes that all evictions from 

the private cache hierarchy are notified to the LLC [29]; the 

eviction notices for clean blocks do not carry any data. A request 

that is forwarded to an owner core is responded directly to the 

requester core with a notification to the home LLC bank for 

clearing the busy/pending state of the involved cache block. As in 

the AlphaServer GS320 protocol, a late intervention in the base- 

line protocol is resolved by the owner core by keeping the evicted 

block in a buffer until the eviction notice is acknowledged by the 

home LLC bank [18]. 

In the in-LLC  coherence  tracking  mechanism,  an  in- 

valid (V=0, D=0) or unowned (V=1) LLC block enters a cor- 

rupted state (V=0, D=1) when it is requested by a core. If the 

access is an instruction read access, the block transitions to the 

4 Existing code blocks may get written to during JIT compilation, dynamic 
linking, and self-modification of code. These accesses come to the LLC as 
data writes and are handled as usual like normal data writes. 
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TABLE II 
SIMULATED   APPLICATIONS 

 

Suite Applications Input/Configuration Simulation length 

PARSEC bodytrack sim-medium Complete ROI 

swaptions sim-small 

SPLASH-23
 barnes 32K particles Complete ROI 

ocean cp 514 × 514 grid 

SPEC 

OMPM2001 
314.mgrid ref input One charge, one iteration 

316.applu train input Six pseudo-time-steps 

324.apsi train input One time-step 

330.art train 2 inputs Complete parallel section 

SPEC JBB SPEC JBB 82 warehouses, single JVM instance Six billion instructions 

TPC MySQL TPC-C 10 GB database, 2 GB buffer pool, 100 warehouses, 100 clients 500 transactions 

MySQL TPC-E 10 GB database, 2 GB buffer pool, 100 clients Five billion instructions 

MySQL TPC-H 2 GB database, 1 GB buffer pool, 100 clients, zero think time, 
even distribution of Q6, Q8, Q11, Q13, Q16, Q20 across client threads 

Five billion instructions 

SPEC Web Apache HTTP server v2.2 Banking (SPEC Web-B), Ecommerce (SPEC Web-E), Support (SPEC Web-S); 

Worker thread model, 128 simultaneous sessions, mod php module 

Five billion instructions 

SPEC JVM sunflow, compress Five operations Five billion instructions in ROI 

3 The SPLASH-2 applications are drawn from the SPLASH2X extension of the PARSEC distribution. 

TABLE III 
LLC BLOCK STATES 

 

V D State 

0 0 Invalid 

1 0 Valid, not modified, unowned, not shared 

1 1 Valid, modified, unowned, not shared 

0 1 Valid, either owned by a core or shared, 
part of data block used for extended state encoding 

TABLE IV 
LLC BLOCK  EXTENDED  STATES 

 

Bit State 

b0 Dirty 

b1 Pending/Busy 

b2 Exclusively owned (b2 = 1) or shared (b2 = 0) 

b3 Sharer encoding format: 
If b3 =  1 then bits b4, . . . , b3+[log2(C)|  encode a sharer/owner. 

If b3  = 0 then bits b4, . . . , b3+C encode a C-bit sharer bitvector. 

 

corrupted shared state (b2 = 0); otherwise it transitions to the 

corrupted exclusive state (b2 = 1). The core id of the requester 

is recorded using the pointer format (b3 = 1). 

A read access to a block in the corrupted exclusive state further 

changes the state of the block to the corrupted shared state, and 

the requester obtains the data block from the exclusive owner. 

A read access to a block in the corrupted shared state leaves the 

block in the same state, and one of the sharers is elected on- 

the-fly to supply the data block to the requester. In this case, 

the critical path of the access increases to three hops (requester 

to home LLC bank, home LLC bank to the elected sharer, 

and elected sharer to the requester), instead of two hops in 

the baseline protocol (LLC would have supplied the data block 

in the baseline). The sharers are recorded using the bitvector 

format (b3 = 0). 

A read-exclusive access to a block in the corrupted exclusive 
or corrupted shared state is handled similarly. In the latter case, 

in addition to electing a sharer to supply the data block, all 

sharers are invalidated and the LLC block is switched to the 

corrupted exclusive state. The invalidation acknowledgements 

are collected at the requester. In this case, the critical path 

does not increase because even in the baseline, the invalidation 

acknowledgements from the sharers must be collected at the re- 

quester before the request can complete.
5
 In the in-LLC protocol, 

5 Our simulated system implements sequential consistency and does not 
support eager-exclusive responses [3], [18]. 

one of these invalidation acknowledgements is of a special type 

and carries the required data block. An upgrade access to a block 

in the corrupted shared state invalidates the sharers and the LLC 

block transitions to the corrupted exclusive state. 

An E state eviction (common case for clean private blocks) 

notification from the private cache hierarchy carries the first 

4+ log2(C) bits of the evicted data block to the LLC so that the 

LLC can reconstruct the block. An M state eviction notification 

from the private cache hierarchy carries the full data block to the 

LLC, as usual. An S state eviction notification from the private 

cache hierarchy does not carry any data with it, as in the baseline. 

In all cases, the evicting core holds the block in a buffer until it 

receives an acknowledgement from the LLC. This is required to 

resolve late intervention races. On receiving an eviction notice 

from the last sharer of a block in S state, the LLC sends a special 

eviction acknowledgement to the sharer requesting it to send the 

portion of the block necessary for reconstruction. The sharer 

supplies the requested portion from the buffer where the block 

is held. 
On eviction of a corrupted dirty block from LLC, the cor- 

rupted part of the block is reconstructed by querying either the 

owner or an elected sharer depending on the extended state of 

the block. If the block is found dirty in the private cache of the 

owner, the entire block is sent to the LLC, as usual. All sharers 

are back-invalidated. 

The LLC needs to execute additional writes to the data array 

for updating the coherence state. These writes are, however, off 

the critical path and the LLC has ample free write bandwidth to 

handle these. Also, the coherence action (if any) for a block in 

the corrupted state (V=0, D=1) can be initiated only after the data 

block is read out and the first few bits are examined. However, 

this few cycles of additional delay in initiating the coherence 

actions for a subset of the shared accesses constitutes a very 

small percentage of the overall round-trip latency of a private 

cache miss for the scale of the systems we are dealing with. As a 

result, this additional delay has negligible impact on the overall 

performance. 

C. Performance Analysis 

The in-LLC coherence tracking technique suffers from two 

shortcomings. First, the read accesses to blocks in corrupted 

shared state require three transactions in the critical path com- 

pared to two transactions in the baseline sparse directory. This 
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can be a major performance concern. Second, the reconstruction 

of the LLC blocks introduces small additional network traffic in 

the form of the first few bits (4 + log2(C) or 4 +C) of a subset 

of the blocks evicted from the private cache hierarchy. 
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Fig. 4. Performance of in-LLC coherence tracking normalized to a 2 sparse 
directory. 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
 

 

busy state waiting to complete forwarded shared read requests. 

The writeback traffic increases due to inclusion of the first few 

bits of the evicted block required for LLC block reconstruction 

in some cases. The coherence traffic increases by more than 5%, 

on average. This increase is primarily due to the extra forwarded 

requests arising from the reads to the shared corrupted blocks. 
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Fig. 6. Percentage of LLC accesses which suffer an increase in critical path. 
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Fig. 5. Interconnect traffic for in-LLC coherence tracking normalized to a 

2× sparse directory. 

Figure 4 quantifies the execution time of the in-LLC coher- 

ence tracking mechanism normalized to a 2 sparse directory. 

For each application, we evaluate two implementations. The 

left bar corresponds to a storage-heavy implementation where 

each LLC block’s tag is extended to track coherence. The right 
bar corresponds to the in-LLC tracking mechanism that we 

introduced in Sections III-A and III-B. According to Table I, the 

number of blocks in the LLC is same as the number of entries 

in a 2 sparse directory. As a result, the storage-heavy imple- 

mentation delivers similar average performance as the baseline 

2 sparse directory. On the other hand, the in-LLC tracking 

mechanism introduced in this section suffers from an 11% 

increase in execution cycles, on average. Several applications 

suffer from more than 10% increase in execution time. For each 

application, the difference in performance between the two bars 

arises from the lengthened critical path (three-hop) of the read 

requests to blocks in the shared corrupted state in the in-LLC 

tracking mechanism that borrows data bits to maintain coherence 

information. In the following, we study the performance of this 

in-LLC coherence tracking mechanism in more detail. 
Figure 5 quantifies the interconnect traffic (in bytes) of the in- 

LLC tracking mechanism normalized to the 2 sparse directory 

baseline. For each application, the left bar corresponds to the 

2  sparse directory baseline and the right bar corresponds 

to the in-LLC tracking mechanism that borrows data bits to 

maintain coherence information. Each bar is divided into three 

segments representing three different types of messages. The 

private cache misses and their responses constitute the processor 

messages. The eviction notices from the cores and their acknowl- 

edgements constitute the writeback messages. The forwarded 

requests from the home LLC bank and the corresponding busy- 

clear messages (if any) coming back to the home LLC bank 

 
Fig. 7. Percentage of allocated LLC blocks which experience lengthened 
accesses. 

Figure 6 shows, for each application, the percentage of the 

LLC accesses that require a three-hop transaction in the in- 

LLC protocol, while the baseline 2 sparse directory could have 

served these through two-hop transactions. These are essentially 

read accesses to blocks in the shared corrupted state. On average, 

30% of LLC accesses suffer from an increase in the critical path. 

For some of the commercial applications, among the lengthened 

accesses, the code accesses are more in population than the 

data accesses. Figure 7 further shows, for each application, the 

percentage of the allocated LLC blocks which experience these 

lengthened accesses. These blocks are a subset of those shown in 

Figure 2. On average, 8% of the allocated LLC blocks cover all 

the offending accesses. Barnes is a clear outlier with 78% of the 

blocks experiencing lengthened accesses. Among the rest, only 

bodytrack, swaptions, 316.applu, and TPC-H have more than 

5% LLC fill population experiencing accesses with lengthened 

critical path. This result clearly points to a viable sparse directory 

design that can track this small fraction of LLC blocks and 

eliminate the performance drawback of the in-LLC protocol. 

This observation forms the foundation of our tiny directory 

proposal. 

To further understand the extent of sharing experienced by the 

blocks considered in Figure 7, we introduce the Shared Three- 

hop Read Access (STRA) ratio. The STRA ratio for an allocated 

LLC block is the fraction of read accesses to the block which 

need to be forwarded to a sharer because the state of the block 

is shared corrupted. All blocks considered in Figure 7 have 

non-zero STRA ratios and all other blocks have zero STRA 

ratio. We classify the blocks with non-zero STRA ratios into 

seven categories C1, . . . , C7. The category Ci for i ∈ [1, 6] 
includes all LLC blocks with STRA ratio ∈ (1 −  1    , 1 − 1 ]. 

constitute the coherence messages. On average, the processor The category 2i−1 2i 

 

and writeback traffic increases by about a percentage each in 

the in-LLC tracking mechanism. The processor traffic increases 

due to an increased volume of negative acknowledgements and 

retries arising from a larger number of LLC blocks being in the 

C7 includes all the LLC blocks with STRA ratio 
(1 64 , 1]. Figure 8 shows the distribution of the allocated 

LLC blocks with non-zero STRA ratios. Figure 9 shows the 
distribution of the LLC read accesses to shared corrupted blocks 

based on the category of the involved block. On average, we 

In-LLC tag extended 

In-LLC data bits borrowed 

Coherence Writeback Processor 

Data 

Code 

N
o

rm
a

li
ze

d
 

in
te

rc
o

n
n

ec
t 

tr
a

ff
ic

 

N
o

rm
a

li
ze

d
 

e
x

e
cu

ti
o

n
 t

im
e

 

P
e

rc
e

n
ta

g
e

 o
f 

a
ll

o
ca

te
d

 

L
L

C
 b

lo
ck

s 

P
e

rc
e

n
ta

g
e

 o
f 

L
L

C
 a

cc
e

ss
e

s 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

150 

 

C1 C2 C3 C4 C5 C6 C7 

100 
 

80 
 

60 
 

40 
 

20 

C1 C2 C3 C4 C5 C6 C7 

100 
 

80 
 

60 
 

40 
 

20 

STRAC+OAC 

see that categories C6 and C7 account for 54% of these LLC 

accesses (Average bar in Figure 9), while these two categories 

cover only 12% of the LLC blocks that source the offending 

accesses (Average bar in Figure 8). This observation further 

substantiates the possibility of a tiny directory, which can track 

the coherence information of this small fraction of blocks. 
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Fig. 8. Distribution of the allocated LLC blocks based on the STRA ratio. 
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Fig. 9. Distribution of offending LLC accesses based on the accessed block 
category. 

IV. TINY DIRECTORY PROPOSAL 

The tiny sparse directory augments the in-LLC coherence 

tracking mechanism. The goal of  the tiny directory  design is 

to track the coherence information pertaining to a subset of 

blocks with high STRA ratio. However, the small size of the tiny 

directory makes the selection of the blocks that are tracked in 

the directory very important. There are two situations in which a 

block can be considered for being tracked in the tiny directory: 

(i) when a read request comes for a block which is in the cor- 

rupted state, and (ii) when an instruction read request comes for 

a block in unowned/non-shared/invalid state. As already noted, 

instruction reads are always responded to in the shared state to 

accelerate code sharing. In both these situations, if the block is 

tracked in the tiny directory, the subsequent shared read requests 

to such a block can be concluded using two-hop transactions. 

The tiny directory design consults an allocation policy in these 

two situations to decide if the requested block’s coherence infor- 

mation should be tracked in the tiny directory. If the decision 

is not to allocate a tiny directory entry for the block, the in- 

LLC coherence tracking extensions, discussed in Section III-B, 

are used to track coherence information for the block. On the 

other hand, if the decision is to allocate a tiny directory entry for 

the requested block, the LLC block is reconstructed (in case it 

is in a corrupted state) by forwarding the request to an elected 

sharer or the owner and asking the elected sharer or the owner 

to not only forward the block to the requester but also send 

the corrupted bits of the block to the LLC. The LLC block is 

switched to a non-corrupted valid state. The coherence state of 

the block is transferred to the allocated tiny directory entry for 

further tracking. 

On eviction of a tiny directory entry, instead of back- 

invalidating the sharers, the evicted entry’s coherence state is 

transferred to the corresponding LLC data block and the LLC 

block transitions to an appropriate corrupted state. If the evicted 

entry’s data block is not present in the LLC (such cases are  

rare), the sharers are back-invalidated. For the best outcome, it is 

important to carry out judicious allocations in the tiny directory 

and minimize the number of pre-mature evictions. We explore 

two allocation/eviction policies next. 

A. Selective Allocation Policies 

The selective allocation policies make use of the STRA ratio 

that the LLC blocks would have experienced in the in-LLC 

coherence tracking mechanism. In addition to the seven cat- 

egories (C1, . . . , C7) of non-zero STRA ratio, we use C0 to 

denote the category of blocks with zero STRA ratio. For esti- 

mating the STRA ratio of an LLC block, two six-bit saturating 

counters, namely STRA Counter (STRAC) and Other Access 

Counter (OAC), are maintained for the block. The STRAC is 

incremented on LLC read accesses which find the block being 

requested in the shared state (such an access would have resulted 

in a three-hop critical path in in-LLC coherence tracking). The 

OAC is incremented on all other LLC accesses (except write- 

back) to the block. Both the counters of the block are halved 

when any of the counters has saturated. The STRA ratio estimate 

for the block is given by the fraction
 
  

ST RAC    . For the 

blocks being tracked in the tiny directory, the directory entry is 

extended by twelve bits to accommodate the two counters. For 

the LLC blocks in corrupted state, twelve bits are borrowed from 

the LLC data block to maintain the two counters (this lengthens 

the corrupted portion by twelve more bits). When the coherence 

information is transferred between a tiny directory entry and 

the corresponding LLC data block, both the access counters 

are also transferred. Once a block returns to the unowned/non- 

shared state, the counters are reset and the STRA ratio for 

the block is deemed zero. In the following, we discuss two 

allocation/eviction policies for the tiny directory. 

1) Dynamic STRA  Policy: The Dynamic STRA (DSTRA) 
policy first looks for an invalid way in the tiny directory target 

set. If there is no such way, it locates the way w with the lowest 

STRA category (say, Ci) in the target set. If there are multiple 

ways with the lowest STRA category, the one with the lowest 
physical way id is selected. Let the STRA category of the block 

B for which the tiny directory allocation policy is invoked be Cj . 

The DSTRA policy victimizes the entry w to track block B only 

if i < j. In summary, this policy tries to track a subset of blocks 

with maximum STRA ratio in the tiny directory. However, one 
major shortcoming of this policy is that a block belonging to 

the C7 STRA category, once tracked in the tiny directory, will 

occupy a tiny directory entry for a long time until its STRA 
ratio comes down. This becomes particularly problematic if the 
block is not accessed for a long time. Our next policy proposal 
remedies this problem. 

2) DSTRA with Generational NRU Policy: The DSTRA 

with generational not-recently-used policy (DSTRA+gNRU) di- 

vides the entire execution into intervals or generations. Each 

tiny directory entry is extended with two state bits, namely, a 

reuse (R) bit and an eviction priority (EP) bit. When a tiny 

directory entry is filled or accessed, the R bit of the entry is set 

and the EP bit is reset, recording the fact that the entry has been 
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B 

recently accessed and must not be prioritized for eviction in the 

current interval. At the end of each interval, the tiny directory 

entries are examined and if an entry’s R bit is reset, its EP bit is 

turned on signifying that the entry can be considered for eviction 

in the next interval. The R bits of all entries are gang-cleared 

at the beginning of each interval signifying the start of a new 

generation of reuses. 

The DSTRA+gNRU policy proceeds similarly to the DSTRA 

policy and selects a way w with the lowest STRA category (Ci) 

in the target set. If there are multiple ways with the lowest STRA 
category, the ones with their EP bits set are selected and then 
among them the one with the lowest physical way id is selected. 

Let the STRA category of the block B for which the tiny di- 

rectory allocation policy is invoked be Cj . The DSTRA+gNRU 

policy victimizes the entry w to track block B only if one of the 

two following conditions is met: (i) i < j, (ii) i == j and the 

EP bit of w is set. The second condition effectively creates an 

avenue for replacing useless entries of a certain STRA category. 
The length of a generation needs to be chosen carefully. We 
set the generation length to the interval between two consecutive 
reuses to a tiny directory entry, averaged across all entries. 
We dynamically estimate this interval as follows. The interval 
length is measured in multiples of 4K cycles and the maximum 
interval length that our hardware can measure is 4M cycles. 

Each tiny directory slice attached to an LLC bank maintains 
a ten-bit counter T which is incremented by one every 4K 
cycles (measured using a twelve-bit counter). Each tiny directory 
entry is extended by ten bits to record the value of counter T 
whenever the entry is accessed. On an access to a tiny directory 
entry, the last recorded value of counter T in the tiny directory 

entry (Tlast) is compared with the current value of counter T in 

the slice (Tcurrent). If Tlast < Tcurrent, the difference between 

Tcurrent and Tlast is added to a counter A. The counter A is 

maintained per tiny directory slice and records the accumulated 
time between two consecutive accesses to a tiny directory entry. 

Another counter B maintained per tiny directory slice records 
the number of values added to counter A. At any point in time, 
the generation length used by a tiny directory slice is estimated 

as 
A . At the beginning of an interval, this value is copied to a 

generation length counter, which is decremented by one every 
4K cycles. A generation ends when this counter becomes zero. 

Both the counters A and B are halved when either of them has 

saturated. When counter T saturates, it is reset to zero. 

B. Introducing Robustness: Spilling into LLC 

The tiny directory is only capable of identifying and tracking 

the coherence state of a subset of blocks that are most likely to 

suffer in terms of lengthened critical path of shared read accesses 

in the in-LLC coherence tracking mechanism. Since the size of 

this performance-critical shared working set of an application 

is not known beforehand and may even vary during execution, 

it is impossible to design an optimally-sized tiny directory that 

can offer robust and reliable performance for a wide range 

of applications. To address this problem, we augment the tiny 

directory design with the option of selectively spilling a subset 

of coherence tracking entries into the LLC. A spilled coherence 

tracking entry occupies a tag and the corresponding data block 

in the LLC. It is different from the data block for which co- 

herence is being tracked. As a result, a fundamental challenge 

in enabling a coherence tracking entry spill policy is to ensure 

that the volume of LLC misses does not increase due to the 

pressure of the spilled tracking entries. Section IV-B1 discusses 

the organization and maintenance of a spilled coherence tracking 

entry. Section IV-B2 describes the selective spill policy, which 

identifies the coherence tracking entries eligible for spilling. 

1) Organization of Spilled Entries: The reason for enabling 
spilling of coherence tracking entries into the LLC is to avoid 
lengthening the critical path of shared read accesses when the 
tiny directory is unable to track all such shared blocks. As a 

result, a coherence tracking entry EB of a block B can be spilled 

into the LLC only if B is currently in the shared state. A spilled 

coherence tracking entry EB is allocated in a way in the same set 

as block B. Since B and EB have the same tag, this allocation 
decision guarantees that in an LLC set, there can be at most two 

tag matches on a lookup. To distinguish between the block B and 

the block holding EB, we use the state (V=0, D=1) for the spilled 

tracking entries. B cannot be in a corrupted state and hence, it 
will have V=1. The LLC replacement policy always victimizes 

a spilled coherence tracking entry EB before the corresponding 

block B. This is ensured by the LRU position update policy of 

the LLC: first, we move EB to the MRU position and then B to 

the MRU position whenever B and EB are accessed. When EB 
is chosen as a victim, the coherence information is transferred to 

B and B switches to the corrupted shared state. 

If an LLC lookup indicates two tag matches, we know that the 
one with state V=1 corresponds to the data block and the other 
one is the spilled coherence tracking entry for the block. On the 
other hand, if the lookup returns a single tag match, the state of 
the matched tag decides if the block is in a corrupted state (V=0, 
D=1) or not (V=1). As usual, the tiny directory is always looked 
up in parallel with the LLC and a tiny directory hit indicates that 
the coherence of the block is being tracked in the tiny directory. 

On an access to a data block B, if the coherence tracking entry 

EB is also in the same set, the two blocks have to be read out 

sequentially. To avoid lengthening the critical path, on a read 

request, we read out the data block B first and respond to the 

requester (recall that spilling is allowed only for blocks in the 

shared state). Next, we read out EB and update the coherence 

tracking information. On a read-exclusive request, we read out 

EB first and send out the invalidations and also ask an elected 

sharer to forward the data block to the requester. On an upgrade 

request, we read out EB first and send out the invalidations. 

For both read-exclusive and upgrade requests, the block EB is 

invalidated and the coherence information is transferred to B, 

which now switches to the corrupted exclusive state. 

2) Selective Spill Policy: The selective spill policy for co- 

herence tracking entries determines if the coherence information 

of a block can be tracked by spilling it in the LLC. This policy is 

invoked in two situations: (i) when the tiny directory’s allocation 

policy declines to track the coherence information of a requested 

block in the tiny directory, and (ii) eviction of a tiny directory 

entry corresponding to a block in the shared state. If the policy 

decision is not to spill in the LLC, the in-LLC coherence tracking 

extensions are used to track the coherence information of the 

involved block. If the policy decision is to spill in the LLC, a way 

is allocated in the same LLC set as the involved block to track the 

coherence information of the block. In this case, if the involved 

block is found in a corrupted state in the LLC, it is reconstructed 

following the reconstruction procedure discussed already and the 

block transitions to a non-corrupted valid state (V=1). 
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Whenever the spill policy is invoked, its goal is to allow 

spilling of coherence tracking entries for blocks with high STRA 
ratio. At the same time, the spill policy must keep a check on the 

LLC miss rate for data blocks. Let Cj be the STRA category 

of the block which is trying to spill its coherence tracking entry 
in the LLC under one of the two aforementioned situations when 
the spill policy is invoked. We formulate the selective spill policy 
design problem as follows. The selective spill policy should 

dynamically determine the STRA category Ci such that the 

coherence tracking entries for the blocks with STRA category 

Cj with j i can be spilled in the LLC whenever needed while 

guaranteeing that the LLC miss rate for data blocks increases by 

no more than a pre-defined value of δ. The value δ represents the 

tolerance limit for LLC miss rate. Each LLC bank independently 

implements this policy and determines a suitable Ci for the bank. 

The index i of this computed Ci for an LLC bank will be referred 

to as the STRA spill threshold category index of the bank and 

this selective spill policy will be referred to as the Dynamic Spill 
policy. We discuss its implementation in the following. 

In each LLC bank, sixteen sets are kept aside that do not admit 

any spilled coherence tracking entries. These sets are used to es- 

timate the LLC bank’s miss rate without spilling (MRno−spill). 

The remaining sets exercise spilling for STRA categories Cj 
such that j i, given a dynamically computed STRA spill 

threshold category index i for the LLC bank. From these sets, 

the LLC bank’s miss rate with spilling (MRspill) can be de- 

termined. We define a window of observation for an LLC bank 

as 8K accesses (except writebacks) to the bank. At the end of 

index value happens at a reasonably slow rate. At the end, to keep 

the design simple, we decide to use our Dynamic Spill policy 

without any change to arrest oscillation. Our evaluation of this 

policy shows that even with the possibility of such oscillations in 

certain phases, the increase in the LLC miss rate due to spilling 

never exceeds the guarantee offered by the value of δ. 

Selection of an appropriate δ is important for the success of 
the proposed spill policy. We define the overall STRA ratio of an 

application as the number of LLC reads to blocks in the shared 

state over the total number of LLC accesses (except writebacks). 

In general, if an application has a very low LLC miss rate, it 

may not be able to tolerate a large increase in LLC miss rate 

because such applications are typically very latency-sensitive. 

On the other hand, if an application is undergoing a phase of 

overall high STRA ratio, it may be possible to convert a larger 

proportion of LLC hits to misses and gain in terms of shared read 

hit latency by spilling more. Within each LLC bank, we measure 

the miss rate and the overall STRA ratio. At the end of each 

window of observation, each LLC bank independently classifies 

the running application into four possible categories: (A) LLC 

bank’s miss rate is at least 10% and STRA ratio is at least 0.4, 

(B) LLC bank’s miss rate is at least 10% and STRA ratio is below 

0.4, (C) LLC bank’s miss rate is below 10% and STRA ratio is at 

least 0.4, and (D) LLC bank’s miss rate is below 10% and STRA 

ratio is below 0.4. At the beginning of each observation window, 

each LLC bank independently decides the value of δ to be used in 

that bank depending on the category of the application observed 

during the last window: δA  =  
1
 , δB  =   

1
  , δC  =   

1
  , δD  =   

1
  . 

4 32 16 32 

each observation window, if MRspill MRno spill + δ is 

satisfied (meaning that due to spilling, the LLC bank’s miss rate 

increases by no more than δ), the STRA spill threshold category 

index i is decreased by one in that bank so that a bigger volume 
of spills can be admitted in the next observation window. On the 

other hand, if MRspill      MRno  spill + δ  is not satisfied, i 
for the bank is increased by one so that the spill volume can be 

reduced. We note that the value of i saturates at zero and seven 

on the two sides of the admissible range. 

The aforementioned policy for dynamically determining the 

STRA spill threshold category index may lead to oscillations in 

the index value around the convergence point unless the index i 
saturates to zero or seven. Such oscillations are easy to detect and 

the STRA spill threshold category index can be fixed to one of 

the two oscillation values such that MRspill MRno  spill + δ 
is satisfied. However, fixing the index value to avoid oscillation 

may cause the state of the algorithm to get stuck at that index 

value leading to lost opportunity of spilling more in certain 

phases of execution. Coming out of such a state will require 

complex mechanisms to detect phase changes when a new lower 

index value can be tried. This is complicated by the fact that 

MRspill for a certain STRA spill threshold category index can- 

not be determined by sampling a few LLC sets (like the way we 

determine MRno spill) because the spill volume distribution is 

non-uniform and highly skewed toward the LLC sets that accom- 
modate shared blocks. We, however, note two important aspects 

about this oscillation. First, if an oscillation at all happens, it is 

restricted to the few phases of execution that experience high to 

moderate volumes of spilling because small amount of spilling 

cannot change the LLC miss rate much. Second, since the length 

of the observation window is quite large (8K accesses per bank 

128 banks or 1M LLC accesses on average), the oscillation in the 

The categories with higher STRA ratio are assigned higher δ 
values while keeping the miss rate profile in mind. These values 

may require tuning depending on the system configuration. 

C. Coherence Processing Latency at LLC 

Among the coherence processing paths traversed by the tiny 

directory proposal at the LLC bank controller, there are two 

situations where the critical path gets slightly lengthened com- 

pared to the baseline. Both the cases arise from accessing a 

block in the corrupted state. If the accessed block is in the 

corrupted shared state, the LLC tag and data must be accessed 

serially followed by decoding of the coherence state from the 

data block before responding to the requester. In the baseline, 

the critical path through the LLC bank controller for accessing 

such a block would involve only the serial access of the LLC 

tag and data (overlapped with sparse directory access). In this 

case, we charge one extra cycle of LLC latency for the tiny 

directory implementation accounting for the coherence state 

decoding overhead. If the accessed block is in the corrupted 

exclusive state, the tiny directory proposal must access the LLC 

tag and data serially and then decode the coherence state before 

forwarding the request to the owner. In the baseline, the critical 

path through the LLC bank controller for accessing such a block 

would involve only the LLC tag access latency overlapped with 

the sparse directory lookup latency. In this case, the tiny direc- 

tory proposal suffers from two additional cycles of LLC data 

access latency (see Table I) followed by one cycle of coherence 

state decoder latency. We model all these additional latencies in 

our evaluation. 

V. SIMULATION RESULTS 

We evaluate our proposal in this section for four different tiny 

directory sizes:
 1 ×,

 1 ×, 
1 ×, and 

1 ×. The
 1 × and

 1 × 
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× 256 
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64 

× 
× 

× × 

64 × 

× 
× 

× ×256 

128 256 

32 64 128 256 

  1    1   
32 64 128 

64 
× 

sizes have respectively 64 and 32 entries per tiny directory slice 
attached to an LLC bank. Both these sizes exercise eight-way 

set-associative directory slices. The 
1 × and 

1 × sizes have 

Figure 7, we note that this critical subset accounts for 78% of 

all allocated LLC blocks for barnes. Even for this application, 

our tiny directory proposal is able to capture the instantaneous 

respectively 16 and 8 entries per tiny directory slice and exercise working set of these critical blocks and deliver performance 

fully-associative configurations. Each directory entry has a size close to a 2× directory.    1 1  

of 155 bits (128-bit sharer vector, 12 bits for STRAC and OAC, 

10 bits for the timestamp counter used to estimate the generation 

length in the gNRU policy, two bits for R and EP states used by 

the gNRU policy, one bit for pending/busy transient state, and 

two coherence state bits for tracking invalid, exclusively owned 

and shared states). Additionally, each directory entry has a tag 

of the following lengths (we assume 48-bit physical address): 32 

bits for 
 1 ×, 33 bits for 

 1 ×, 35 bits for 
 
 
1  × and 

 
 
1  ×. As a 

Figures 12 and 13 evaluate our proposal for 128 and 256 

sizes, respectively. At these two sizes, the gNRU policy gains 
further in importance in several applications. On average, for the 

128 size, the DSTRA and the DSTRA+gNRU policies have 6% 
and 5% higher execution cycles compared to the 2   directory. 
The dynamic spill policy assumes significant importance at these 
small directory sizes and brings down the gap between our pro- 

posal and the 2× directory to 1%. Referring back to Figure 3, we 
result, the total storage investment for coherence tracking across 

all 128 slices is as follows: 187 KB for 
 1 ×, 94 KB for 

 1 ×, 
note that a sparse directory that tracks only shared blocks suffers 

from a 28% slowdown for the 
1 × size compared to a 2× 

47.5 KB for 128 ×, and 23.75 KB for 256 ×. 
1

 

Figures  10  and  11  evaluate  our  proposal  for × and 
directory, on average. Our tiny directory proposal successfully 
wipes away this performance loss. 

32 
 1      sizes, respectively. These figures quantify the percent- 

age increase in execution cycles compared to a 2  directory. 

For each tiny directory size, we show the results with the 

DSTRA allocation policy, DSTRA+gNRU allocation policy, and 

DSTRA+gNRU augmented with dynamic spilling (DynSpill) of 
coherence tracking entries. For the 

 1 × size (Figure 10), both 

For the 
1 size (Figure 13), the DSTRA and the 

DSTRA+gNRU policies have 8% and 6% higher execution cy- 

cles compared to the 2 directory, on average. Dynamic spilling 

reduces this gap to 1%. In summary, our tiny directory proposal 
offers robust performance staying within a percentage of a sparse 
2× directory as the tiny directory size is varied between

 1 × and 
 

 
32 

DSTRA and DSTRA+gNRU policies are, on average, within 1% 
of the performance of 2 directory; when dynamic spilling is 

enabled, the gap reduces to 0.5%. Referring back to Figure 4, 
we note that the in-LLC coherence tracking mechanism is 11% 

worse than the 2 directory. Introduction of a tiny directory 

bridges this gap. 
1.06 
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Fig. 10.  Performance of  
1 × tiny directory normalized to a sparse 2× 
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Fig. 11.   Performance of  
1 tiny directory normalized to a sparse 2 

directory. 

For the 
 1 size (Figure 11), the gNRU-assisted allocation 

policy begins to gain in importance in some of the applica- 
tions (ocean cp and SPECWeb). On average, the DSTRA policy 

has 3% higher execution cycles compared to the 2 directory, 

while the DSTRA+gNRU policy is only 2% away from the 2 
directory. Dynamic spilling further brings this gap down to 1%. 

Referring back to the discussion related to Figure 3, we note 

that a skew-associative directory that tracks only shared blocks 
suffers from a 12% slowdown for the

 1 × size compared to a 2× 

Fig. 13.   Performance of tiny directory normalized to a sparse 2 
directory. 

 

A. Analysis of Performance 

The main purpose of the tiny directory proposal is to elim- 

inate most of the additional three-hop transactions that the in- 

LLC coherence mechanism introduced. When these three-hop 

transactions get replaced by the two-hop transactions as in the 

sparse 2   directory, the performance is expected to be similar 

to the 2    directory. Referring back to Figure 6, we note that 

the percentage of LLC accesses that suffer from an increased 

critical path because they get extended to three-hop transactions 

in the in-LLC coherence tracking mechanism is 30% on average. 

To confirm that our proposal is able to address this problem 

successfully, Figures 14 and 15 show the percentage of the LLC 

accesses that suffer from an increase in the critical path for a 
  

64 
directory, on average. Our set-associative tiny directory without 
dynamic spilling at this size performs far better underscoring the 

success of the DSTRA and the DSTRA+gNRU policies which 

capture a critical subset of the shared blocks. Referring back to 

  1   1  
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Fig. 12.   Performance of × tiny directory normalized to a sparse 2×   1  
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32 × 
× × 32 tiny directory system and a 256 tiny directory system, 

the two extreme points of our size spectrum. For a
 1 tiny 

directory, the DSTRA and the DSTRA+gNRU policies have 

only 3% and 2% such LLC accesses on average. The 

dynamic 
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32 

256 × 

256 

× 

× × × × 

× 

32 256 

256 directories, this number is 59.5, 46.1, 16.6, and 17.5, re- 

× × × 

spill policy brings this average to under 1%. For a 
1 tiny 

directory, this percentage increases significantly for the DSTRA 

and the DSTRA+gNRU policies. These policies experience 23% 

and 20% such LLC accesses respectively (still lower than in- 

LLC mechanism), while the dynamic spill policy successfully 

brings this average down to only 4%. These small residual extra 

three-hop transactions cause a percent loss in performance. 

12 
10 

8 
6 
4 
2 
0 

 
 

 
 
 

Fig. 14. Percentage of LLC accesses which suffer from an increase in critical 

path in a 1 × tiny directory. 
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Fig. 16. Hits in tiny directory with the DSTRA+gNRU policy normalized to 
the DSTRA policy. 
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Fig. 15. Percentage of LLC accesses which suffer from an increase in critical 

path in a 
1 × tiny directory. 

The success of the tiny directory in reducing the number of 

extra three-hop transactions depends on the number of hits that 

a tiny directory entry enjoys. Figure 16 shows the number of 

tiny directory hits for the DSTRA+gNRU policy normalized 

to the DSTRA policy for all the four directory sizes. As the 
directory size decreases from

 1 × to  
1 ×, the gNRU policy 

 

  

 

Fig. 17. Allocations in tiny directory with the DSTRA+gNRU policy 
normalized to the DSTRA policy. 
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Fig. 18. Hits per allocation in tiny directory with the DSTRA+gNRU policy. 

the percentage of the LLC accesses which are able to avoid 

increase in critical path because of spilled directory entries when 

using the DSTRA+gNRU+DynSpill policy. These are essentially 

read accesses to the blocks, the coherence tracking entries of 

32 gains in importance. On average, for 256 ×, ×, ×, and × 
which are spilled in the LLC. Without these spilled entries, these 

32 64 128 256 accesses would get extended to three-hop transactions because 
directories, the DSTRA+gNRU policy offers, respectively, 3%, 
12%, 23%, and 39% more directory entry hits compared to the 

DSTRA policy. The biggest beneficiaries of the gNRU policy are 

bodytrack, swaptions, barnes, ocean cp, 330.art, and SPECWeb. 
 

the data block would have been in the corrupted shared state. The 

percentage of such LLC accesses increases significantly as the 
tiny directory size drops. On average, for 

 1 ×, 
 1 ×,  

1  ×, and 

  1 
32 64 128 

The primary advantage of the gNRU policy is that it quickly 
removes the useless directory entries, which the DSTRA policy 

would have retained for a long time. This creates room for more 

useful directory entries to be tracked. Figure 17 validates this 

behavior by quantifying the number of allocations in the tiny 

directory experienced by the DSTRA+gNRU policy normalized 

to the DSTRA policy for all the four directory sizes. As the 

directory size decreases from 
 1 × to 

 
 

1  ×, the gNRU policy 

256 directories, 2%, 5%, 11%, and 16% LLC accesses benefit 
from spilling. The biggest beneficiaries are bodytrack, barnes, 

SPECWeb, and TPC. 

50 
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allows a much larger number of directory fills to take place, 
thereby significantly increasing the effective coverage of the 
tiny directory. On average, for 

 1 ×, 
 1 ×, 

 
 

1 ×, and 
 
 

1 × 
 

Fig. 19. Percentage of LLC accesses which are able to avoid increase in 
32 64 128 256 critical path because of spilled directory entries in the LLC when using the 

directories, the DSTRA+gNRU policy observes, respectively, 

2 , 7 , 50 , and 74 more directory fills compared to the 

DSTRA policy. Figure 18 quantifies the average number of hits 

enjoyed by a directory entry before getting replaced for the 

DSTRA+gNRU policy. On average, for  
1    ,  

1    , 
 
 

1     , and 
  1 

32        64         128 

spectively. This result confirms that the directory entries tracked 

by the DSTRA+gNRU policy are indeed important. They enjoy 

a significant number of hits before getting replaced even for the 

smallest size. 

Next, we analyze our dynamic spill policy which we have 

shown to be highly robust across the board. There are two aspects 

of the dynamic spill policy that we analyze. Figure 19 shows 

DSTRA+gNRU+DynSpill policy. 

The second aspect of the spill policy is its influence on the 

LLC miss rate. We are particularly interested in the behavior 

of the applications that already have high LLC miss rates in 

the baseline. For example, the applications with more than 

10% LLC miss rate include ocean cp (35% LLC miss rate), 

314.mgrid (78%), 324.apsi (12%), 330.art (63%), SPECWeb- 

B (14%), SPECWeb-E (19%), and SPECWeb-S (18%). Our Dy- 

namic Spill policy guarantees an upper bound on the LLC miss 

rate increase through the δ values. Figure 20 shows the increase 
in LLC miss rate when using the DSTRA+gNRU+DynSpill 

policy relative to the sparse 2× directory. As the tiny directory 
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× 
256 

× 

128 × 

 1  
× × 

16 

× 

4 × 

× 

× 

256 

256 

64 
) and an eight-way set-associative Stash directory for 

8 16 32 64 

256 
  1  8 16 32 

128 256 

128 256 

size decreases, the LLC miss rate increases very slowly. Only 

316.applu and 330.art show more than 1% increase in the LLC 

miss rate compared to the 2 directory. Across the board, the 

maximum increase in the LLC miss rate due to spilling is 
 % experienced by 316.applu when operating with a 

 
 

1  × 

but requires 1 MB space for its directory data array and performs 

2.5% worse than the 
1 × tiny directory. 

tiny directory. We note that this is within the smallest 
256 

δ (the 

guaranteed upper bound on LLC miss rate increase) that we 

use (Section IV-B2). The average increase in the LLC miss rate 

is under 0.5% for all directory sizes. 
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Fig. 21. Execution cycles and energy normalized to the 
exercising the DSTRA+gNRU+DynSpill policy. 

 

C. Comparison to Related Proposals 
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× tiny directory 
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Fig. 20. Increase in LLC miss rate due to spilling when using 
DSTRA+gNRU+DynSpill policy compared to a 2× sparse directory. 

To further confirm that our proposal continues to offer ro- 

bust performance for smaller LLC capacities, we evaluate our 

proposal in a configuration where the entire cache hierarchy is 

halved in terms of the number of sets (the capacity ratio between 

different levels is maintained) i.e., the shared LLC capacity is 

16 MB in both the baseline and our proposal. In this configu- 

ration, compared to a sparse 2 directory, the DSTRA+gNRU 

and DSTRA+gNRU+DynSpill policies experience an average 

increase of 7% and 1% execution cycles for a 
1  tiny direc- 

tory (eight entries fully-associative per slice) where spilling is 

quite prevalent. 

Recent proposals have tried to reduce the number of sparse 

directory entries by addressing the overhead of tracking the pri- 

vate blocks. These contributions were reviewed in Section I-A. 

By comparing Figure 3 with Figures 10, 11, and 12 we have 

already shown that our proposal performs much better than a 

sparse directory that tracks only shared blocks. None of the 

recent proposals that try to reduce the overhead of tracking the 

private blocks can perform better than the ideal sparse directory 

that tracks only shared blocks. Nonetheless, for completeness, 

we evaluate the state-of-the-art multi-grain directory (MgD) [47] 

and the Stash directory [14]. The MgD invests just one directory 

entry for a private region of size 1 KB, thereby saving signifi- 

cantly on the overhead of tracking the private blocks. The Stash 

directory does not track private blocks after the corresponding 

directory entries are evicted and later if such a block gets shared, 

it resorts to broadcast to reconstruct the directory entry. Figure 22 
evaluates a skew-associative MgD for four sizes ( 

1 ×,
 1 ×,

 1 ×, 
 

B. Energy Comparison and 
 1 × 

8 16 32 

We use CACTI [21] (distributed with McPAT [22]) to compute 

the dynamic and leakage energy consumed by the LLC and the 

sparse directory for 22 nm nodes. Figure 21 shows the dynamic, 

leakage, and total energy of the LLC and the sparse directory 

32 size. Compared to a 2 sparse directory, the MgD proposal 

suffers from a 0.1%, 8%, 29%, and 63% increase in average 

execution cycles for 
1 ×,

 1 ×,
 1 ×, and

 1 × sizes, respectively. 
The Stash directory at 

 1 × size performs 41% worse than the 

for the baseline configurations (from 2× to 1 ×) normalized to 
32 

2× directory on average. For comparison, we note that the 
 

the 
 
 

1 × tiny directory exercising the DSTRA+gNRU+DynSpill baseline sparse directory at 
1 ×,

 1 ×, and  
 1 × sizes performs 

policy. We have also shown the 128 tiny directory in the figure. 
Additionally, the figure includes the trends in the execution 

cycles as well. As the baseline sparse directory size decreases, 

the execution cycles monotonically increase, as expected. The 

dynamic, leakage, and total energy expense first decreases as 

the baseline directory size shrinks. However, beyond 
1     size 

of the baseline directory, the energy expense increases quickly 
due to increasing execution cycles. Compared to the 

 
 

1  × 

respectively 11%, 28%, and 71% worse than the 2  directory 

on average. We find that the Stash directory is able to save a 

significant volume of the private cache misses because it does not 

back-invalidate the private blocks on sparse directory eviction. 

However, the broadcast traffic becomes a major bottleneck in 

this proposal, particularly for the scale of the systems we are 

considering. In comparison, our proposal exercising directory 
sizes between 

 
 

1 × and
 1 × performs within 1% of a 2× sparse 

256 
tiny directory, the baseline dynamic energy is much lower. The 
extra dynamic energy consumption in the tiny directory arises 

directory. 
256 32 

primarily from the additional LLC writes that need to be done to 

update the coherence information in the corrupted and the spilled 

entries. On the other hand, the leakage and total energy expense 

is much lower in the tiny directory due to the drastically reduced 

size of the directory. The data array of a 2   directory is 8 MB 

in capacity compared to 47.5 KB and 23.75 KB total sizes of 

the 
1 × and 

1 × tiny directories. Overall, compared to the 

baseline sparse 2× directory, our proposal saves 17% and 16% 

of total LLC and directory energy for the 
 
 

1  × and 
 
 

1  × tiny 
directory sizes, respectively. The baseline 

1 × sparse directory 
 

VI. SUMMARY AND FUTURE DIRECTIONS 

We have presented a novel design to track coherence infor- 

mation within a chip-multiprocessor. The design allows us to 

significantly scale down the traditional sparse directory size. Our 

proposal has three major components. First, it tracks the private 

block owner by borrowing a few bits of the last-level cache 

data block. Second, it employs a tiny directory that tracks the 

coherence information of a critical subset of the blocks belong- 

ing to the shared working set. Third, if the tiny directory is too 

small to track all the critical shared blocks, the proposal employs 

configuration comes closest to the  
1 × 

4 
tiny directory in terms dynamic selective spilling of the coherence tracking entries into 

of total energy expense (4% more than the 
 
 

1 × tiny directory), the LLC. Any remaining block is tracked by borrowing a few 

    1  
256 

× 
    1  
128 

×   1 
64 

×   1 
32 

× 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 
2× 1× × 1 1 1 

2 4 
Baseline sparse directory size 

× 
8 
×   1 

16 × Tiny ×     1  
128 

LLC+Dir. Total Energy 

Execution Cycles 

LLC+Dir. Dynamic Energy 

LLC+Dir. Leakage Energy 

In
cr

e
a

se
 i

n
 L

L
C

 

m
is

s 
ra

te
 (

%
) 

N
o

rm
a

li
ze

d
 e

x
ec

u
ti

o
n

 

cy
cl

e
s 

a
n

d
 e

n
e

rg
y

 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

157 

 

and 
1  ×  

32
performs within 1% of a system with a 2× 
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Fig. 22. Performance of 
1 ×, 

1 ×, 
1 ×, 

1 × multi-grain directory (MgD) 
 

[20] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic 
Requirements for Scalable Directory-based Cache Coherence Schemes. 
In ICPP 1990. 

[21] HP Labs. CACTI: An Integrated Cache and Memory Access Time, 
Cycle Time, Area, Leakage, and Dynamic Power Model. Available at 
http://www.hpl.hp.com/research/cacti/. 

[22] HP Labs. McPAT: An Integrated Power, Area, and Timing Modeling 
Framework for Multicore and Manycore Architectures. Available at 
http://www.hpl.hp.com/research/mcpat/. 

[23] D. James, A. Laundrie, S. Gjessing, and G. Sohi. Distributed Directory 
Scheme: Scalable Coherent Interface. In IEEE Computer, June 1990. 

[24] J. H. Kelm, M. R. Johnson, S. S. Lumetta, and S. J. Patel. WAYPOINT: 
Scaling Coherence to Thousand-core Architectures. In PACT 2010. 

[25] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. 
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bits of the LLC data block. The simulation results on a 128- 
core system for a wide range applications show that our proposal 

operating with tiny directories of size ranging between 
 1 × 

256 sparse 

directory. 

The application of the tiny directory proposal to inter-socket 

coherence tracking in a multi-socket environment is the next 

natural step to explore. We believe that this could be a promising 

future direction for significantly reducing the space invested to 

maintain the inter-socket coherence directory. 
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